A Multi-Functional Microfluidic Device Compatible with Widefield and Light Sheet Imaging

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Regan P Moore ◽  
Ellen C O’Shaughnessy ◽  
Yu Shi ◽  
Ana T Nogueira ◽  
Katelyn M Heath ◽  
...  

We present a microfluidic device compatible with high resolution light sheet and super-resolution microscopy. Our device is a 150 μm thick chamber with a transparent fluorinated ethylene propylene (FEP) cover...

The Analyst ◽  
2021 ◽  
Author(s):  
Yucheng Sun ◽  
Seungah Lee ◽  
Seong Ho Kang

The contact distance between mitochondria (Mito) and endoplasmic reticulum (ER) has received considerable attention owing to their crucial function in maintaining lipid and calcium homeostasis. Herein, cubic spline algorithm-based depth-dependent...


2018 ◽  
Vol 114 (3) ◽  
pp. 14a
Author(s):  
Anna-Karin Gustavsson ◽  
Petar N. Petrov ◽  
Maurice Y. Lee ◽  
Yoav Shechtman W.E. Moerner

2021 ◽  
Author(s):  
Subhamoy Mahajan ◽  
Tian Tang

AbstractFluorescence microscopy allows the visualization of live cells and their components, but even with advances in super- resolution microscopy, atomic resolution remains unattainable. On the other hand, molecular simulations (MS) can easily access atomic resolution, but comparison with experimental microscopy images has not been possible. In this work, a novel in-silico widefield fluorescence microscopy is proposed, which reduces the resolution of MS to generate images comparable to experiments. This technique will allow cross-validation and compound the knowledge gained from experiments and MS. We demonstrate that in-silico images can be produced with different optical axis, object focal planes, exposure time, color combinations, resolution, brightness and amount of out-of-focus fluorescence. This allows the generation of images that resemble those obtained from widefield, confocal, light-sheet, two-photon and super-resolution microscopy. This technique not only can be used as a standalone visualization tool for MS, but also lays the foundation for other in-silico microscopy methods.


2020 ◽  
Author(s):  
Stella Corsetti ◽  
Philip Wijesinghe ◽  
Persephone B. Poulton ◽  
Shuzo Sakata ◽  
Khushi Vyas ◽  
...  

AbstractImaging across length scales and in depth has been an important pursuit of widefield optical imaging. This promises to reveal fine cellular detail within a widefield snapshot of a tissue sample. Current advances often sacrifice resolution through selective sub-sampling to provide a wide field of view in a reasonable time scale. We demonstrate a new avenue for recovering high-resolution images from sub-sampled data in light-sheet microscopy using deep-learning super-resolution. We combine this with the use of a widefield Airy beam to achieve high-resolution imaging over extended fields of view and depths. We characterise our method on fluorescent beads as test targets. We then demonstrate improvements in imaging amyloid plaques in a cleared brain from a mouse model of Alzheimer’s disease, and in excised healthy and cancerous colon and breast tissues. This development can be widely applied in all forms of light sheet microscopy to provide a two-fold increase in the dynamic range of the imaged length scale. It has the potential to provide further insight into neuroscience, developmental biology and histopathology.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Anna-Karin Gustavsson ◽  
Petar N. Petrov ◽  
Maurice Y. Lee ◽  
Yoav Shechtman ◽  
W. E. Moerner

2020 ◽  
Author(s):  
Biswajoy Ghosh ◽  
Jyotirmoy Chatterjee ◽  
Ranjan Paul ◽  
Pooja Lahiri ◽  
Mousumi Pal ◽  
...  

Abstract Fibrosis is an extracellular matrix disease affecting several vital organs' functions and can lead to life-threatening pathologies like cancer. The standard diagnostic protocol involves an immuno-histochemical examination of the fibrosis-linked protein's distribution in the tissues. Of specific interest are the primarily affected dense matrix-proteins like collagen. But labeling such dense proteins is prone to subjectivity. Besides distribution, the collagen nano-fibril characteristics, usually revealed by ultra-structural imaging, also have diagnostic relevance. Super-resolution microscopy can aid high-resolution clinical decisions by imaging protein nano-structures but is challenging for dense proteins. Here we exploit the natural fluctuations of tissue autofluorescence (tAF) signal from proteins in dense tissue matrix for super-resolving them. We achieved super-resolution over a clinically relevant large area using a simple, low-cost, low numerical aperture (NA) optical microscope and a recent fluctuation-based nanoscopy technique MUSICAL. We could quantify protein distribution and nano-fibril dimensions as low as 43 nm in human oral mucosa with pre-cancer fibrosis and mouse skin samples to assess disease progression. Thus tAF-MUSICAL enables early, label-free, and high-resolution diagnosis of matrix-associated diseases like fibrosis.


2013 ◽  
Vol 36 (1-2) ◽  
pp. 5-17 ◽  
Author(s):  
Luke Fritzky ◽  
David Lagunoff

It requires a good deal of will power to resist hyperbole in considering the advances that have been achieved in fluorescence microscopy in the last 25 years. Our effort has been to survey the modalities of microscopic fluorescence imaging available to cell biologists and perhaps useful for diagnostic pathologists. The gamut extends from established confocal laser scanning through multiphoton and TIRF to the emerging technologies of super-resolution microscopy that breech the Abbé limit of resolution. Also considered are the recent innovations in structured and light sheet illumination, the use of FRET and molecular beacons that exploit specific characteristics of designer fluorescent proteins, fluorescence speckles, and second harmonic generation for native anisometric structures like collagen, microtubules and sarcomeres.


Sign in / Sign up

Export Citation Format

Share Document