System Construction and Signal Processing of a Focused 140G Terahertz Frequency Modulated Continuous Wave Imaging System with Tomography Capability

Author(s):  
Tianyi Wang ◽  
Lingyue Cui ◽  
Chengwu You ◽  
Sishi Shen ◽  
Zhengang Yang ◽  
...  
2012 ◽  
Vol 30 (3) ◽  
pp. 193-197
Author(s):  
Ying-Xin WANG ◽  
Zi-Ran ZHAO ◽  
Zhi-Qiang CHEN ◽  
Li ZHANG ◽  
Ke-Jun KANG ◽  
...  

2018 ◽  
Vol 26 (5) ◽  
pp. 5358 ◽  
Author(s):  
Corinna L. Koch Dandolo ◽  
Jean-Paul Guillet ◽  
Xue Ma ◽  
Frédéric Fauquet ◽  
Marie Roux ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4092
Author(s):  
Gintaras Valušis ◽  
Alvydas Lisauskas ◽  
Hui Yuan ◽  
Wojciech Knap ◽  
Hartmut G. Roskos

In this roadmap article, we have focused on the most recent advances in terahertz (THz) imaging with particular attention paid to the optimization and miniaturization of the THz imaging systems. Such systems entail enhanced functionality, reduced power consumption, and increased convenience, thus being geared toward the implementation of THz imaging systems in real operational conditions. The article will touch upon the advanced solid-state-based THz imaging systems, including room temperature THz sensors and arrays, as well as their on-chip integration with diffractive THz optical components. We will cover the current-state of compact room temperature THz emission sources, both optolectronic and electrically driven; particular emphasis is attributed to the beam-forming role in THz imaging, THz holography and spatial filtering, THz nano-imaging, and computational imaging. A number of advanced THz techniques, such as light-field THz imaging, homodyne spectroscopy, and phase sensitive spectrometry, THz modulated continuous wave imaging, room temperature THz frequency combs, and passive THz imaging, as well as the use of artificial intelligence in THz data processing and optics development, will be reviewed. This roadmap presents a structured snapshot of current advances in THz imaging as of 2021 and provides an opinion on contemporary scientific and technological challenges in this field, as well as extrapolations of possible further evolution in THz imaging.


1984 ◽  
Vol 17 (6) ◽  
pp. 526-532 ◽  
Author(s):  
G F Kirkbright ◽  
R M Miller ◽  
A Rzadkiewicz

2011 ◽  
Vol 3 (5) ◽  
pp. 521-532 ◽  
Author(s):  
Simone Montori ◽  
Elisa Chiuppesi ◽  
Paola Farinelli ◽  
Luca Marcaccioli ◽  
Roberto Vincenti Gatti ◽  
...  

This paper presents recent advances on reconfigurable reflectarrays at the University of Perugia. In particular, the activities carried out in the framework of the FP7 project ARASCOM (“MEMS and Liquid Crystal based” Agile Reflectarray Antennas for Security and COMmunication). As for ARASCOM outcomes, the purpose of the project is the design of a very large reconfigurable reflectarray controlled with micro-electro-mechanical systems (MEMS) for mm-wave imaging system at 76.5 GHz. A system with sufficient resolution to detect concealed weapons impose challenging requirements on the antenna, which shall be made of hundreds of thousands elements. The problem has been addressed by exploiting some innovative solutions and architectures that will be described in this document. In particular, the dimensioning of the reflectarray, the proposed 1-bit geometry of elementary cell, and the innovative biasing control architecture are reported together with the MEMS design and fabrication and the experimental results of a demonstrating board that validated the adopted procedure.


2012 ◽  
Vol 7 (S1) ◽  
pp. S126-S131 ◽  
Author(s):  
Hongbing Zhang ◽  
Kazutaka Mitobe ◽  
Mahmudul Kabir ◽  
Masafumi Suzuki ◽  
Yoko Mitobe ◽  
...  

2015 ◽  
Vol 77 (7) ◽  
Author(s):  
Sheena P. Philimon ◽  
Audrey K. C. Huong ◽  
Xavier T. I. Ngu

This paper presents the use of Extended Modified Lambert Beer (EMLB) model for quantification of transcutaneous blood oxygen saturation (StO2) via a noninvasive approach. Continuous wave (CW) reflectance spectroscopy system is employed for measurement of intensity reflected from left index finger of an Asian nonsmoking volunteer at resting condition. Multispectral images captured in the wavelength range of 520 − 600 nm at an interval of 10 nm are mathematically analyzed and fitted using the developed fitting algorithm to give the best estimation of StO2. The result from this preliminary study revealed a mean StO2 value of 75 ± 5% for the participating individual, which value agreed considerably well with that presented in previous works. This work concluded that the developed spectroscopy system and quantification technique can potentially be used as an alternative means to clinical assessment of wound healing progress


Sign in / Sign up

Export Citation Format

Share Document