Relative Red-Green Sensitivity as a Function of Retinal Position

1962 ◽  
Vol 52 (1) ◽  
pp. 81 ◽  
Author(s):  
Mary M. Connors ◽  
Jo Ann S. Kinney
1955 ◽  
Author(s):  
Beverly Hillmann ◽  
Gilbert B. Lee ◽  
Harry G. Sperling
Keyword(s):  

2007 ◽  
Vol 98 (4) ◽  
pp. 2089-2098 ◽  
Author(s):  
Sean P. MacEvoy ◽  
Russell A. Epstein

Complex visual scenes preferentially activate several areas of the human brain, including the parahippocampal place area (PPA), the retrosplenial complex (RSC), and the transverse occipital sulcus (TOS). The sensitivity of neurons in these regions to the retinal position of stimuli is unknown, but could provide insight into their roles in scene perception and navigation. To address this issue, we used functional magnetic resonance imaging (fMRI) to measure neural responses evoked by sequences of scenes and objects confined to either the left or right visual hemifields. We also measured the level of adaptation produced when stimuli were either presented first in one hemifield and then repeated in the opposite hemifield or repeated in the same hemifield. Although overall responses in the PPA, RSC, and TOS tended to be higher for contralateral stimuli than for ipsilateral stimuli, all three regions exhibited position-invariant adaptation, insofar as the magnitude of adaptation did not depend on whether stimuli were repeated in the same or opposite hemifields. In contrast, object-selective regions showed significantly greater adaptation when objects were repeated in the same hemifield. These results suggest that neuronal receptive fields (RFs) in scene-selective regions span the vertical meridian, whereas RFs in object-selective regions do not. The PPA, RSC, and TOS may support scene perception and navigation by maintaining stable representations of large-scale features of the visual environment that are insensitive to the shifts in retinal stimulation that occur frequently during natural vision.


Development ◽  
1987 ◽  
Vol 99 (3) ◽  
pp. 393-410
Author(s):  
J.S. Taylor

This study concerns the retinotopic organization of the ganglion cell fibres in the visual system of the frog Xenopus laevis. HRP was used to trace the pathways taken by fibres from discrete retinal positions as they pass from the retina, along the optic nerve and into the chiasma. The ganglion cell fibres in the retina are arranged in fascicles which correspond with their circumferential positions of origin. Within the fascicles the fibres show little age-related layering and do not have a strict radial organization. As the fascicles of fibres pass into the optic nerve head there is some exchange of position resulting in some loss of the retinal circumferential organization. The poor radial organization of the fibres in the retinal fascicles persists as the fibres pass through the intraocular part of the nerve. At a position just behind the eye there is a major fibre reorganization in which fibres arising from cells of increasingly peripheral retinal locations are found to have passed into increasingly peripheral positions in the nerve. Thus, fibres from peripheral-most retina are located at the nerve perimeter, whilst fibres from central retina are located in the nerve core. It is at this point that the radial, chronotopic, ordering of the ganglion cell axons, found throughout the rest of the optic pathway, is established. This annular organization persists along the length of the nerve until a position just before the nerve enters the brain. Here, fibres from each annulus move to form layers as they pass into the optic chiasma. This change in the radial organization appears to be related to the pathway followed by all newly growing fibres, in the most superficial part of the optic tract, adjacent to the pia. Just behind the eye, where fibres become radially ordered, the circumferential organization of the projection is largely lost. Fibres from every circumferential retinal position, which are of similar radial position, are distributed within the same annulus of the nerve. At the nerve-chiasma junction where each annulus forms a single layer as it enters the optic tract, there is a further mixing of fibres from all circumferential positions. However, as the fibres pass through the chiasma some active pathway selection occurs, generating the circumferential organization of the fibres in the optic tract. Additional observations of the organization of fibres in the optic nerve of Rana pipiens confirm previous reports of a dual representation of fibres within the nerve. The difference in the organization of fibres in the optic nerve of Xenopus and Rana pipiens is discussed.


1989 ◽  
Vol 1 (4) ◽  
pp. 317-326 ◽  
Author(s):  
Sabrina J. Goodman ◽  
Richard A. Andersen

Microstimulation of many saccadic centers in the brain produces eye movements that are not consistent with either a strictly retinal or strictly head-centered coordinate coding of eye movements. Rather, stimulation produces some features of both types of coordinate coding. Recently we demonstrated a neural network model that was trained to localize the position of visual stimuli in head-centered coordinates at the output using inputs of eye and retinal position similar to those converging on area 7a of the posterior parietal cortex of monkeys (Zipser & Andersen 1988; Andersen & Zipser 1988). Here we show that microstimulation of this trained network, achieved by fully activating single units in the middle layer, produces “saccades” that are very much like the saccades produced by stimulating the brain. The activity of the middle-layer units can be considered to code the desired location of the eyes in head-centered coordinates; however, stimulation of these units does not produce the saccades predicted by a classical head-centered coordinate coding because the location in space appears to be coded in a distributed fashion among a population of units rather than explicitly at the level of single cells.


2021 ◽  
Author(s):  
Kanying Liu ◽  
Wei Li ◽  
Erbao Cao ◽  
Yong Lan

Abstract We study the pricing strategies of supply chains of green products under behaviour-based pricing. Considering consumer preferences for green product functional attributes and environmental attributes, we construct a two-stage supply chain. The optimal behaviour pricing of green products is solved, and the effects of green sensitivity and the cost coefficient on the optimal price are analysed. We find that when consumers are less sensitive to the greenness, with the increase in the market share of green products, green product retailers will increase the loyalty price. An increase in greenness sensitivity and a decrease in the greenness cost coefficient will increase the wholesale prices and retail prices of green products. Consumer attention to the greenness and a decrease in the initial market share of green products will be conducive to promoting the greenness and improving the environment. Consumers' emphasis on the greenness of their products will lead to higher profits for the manufacturers and retailers of green products.


1997 ◽  
Vol 8 (3) ◽  
pp. 224-230 ◽  
Author(s):  
Rick O. Gilmore ◽  
Mark H. Johnson

The extent to which infants combine visual (i e, retinal position) and nonvisual (eye or head position) spatial information in planning saccades relates to the issue of what spatial frame or frames of reference influence early visually guided action We explored this question by testing infants from 4 to 6 months of age on the double-step saccade paradigm, which has shown that adults combine visual and eye position information into an egocentric (head- or trunk-centered) representation of saccade target locations In contrast, our results imply that infants depend on a simple retinocentric representation at age 4 months, but by 6 months use egocentric representations more often to control saccade planning Shifts in the representation of visual space for this simple sensorimotor behavior may index maturation in cortical circuitry devoted to visual spatial processing in general


2002 ◽  
Vol 14 (6) ◽  
pp. 1371-1392 ◽  
Author(s):  
Jenny C. A. Read

I present a probabilistic approach to the stereo correspondence problem. Rather than trying to find a single solution in which each point in the left retina is assigned a partner in the right retina, all possible matches are considered simultaneously and assigned a probability of being correct. This approach is particularly suitable for stimuli where it is inappropriate to seek a unique partner for each retinal position—for instance, where objects occlude each other, as in Panum's limiting case. The probability assigned to each match is based on a Bayesian analysis previously developed to explain psychophysical data (Read, 2002). This provides a convenient way to incorporate constraints that enable the ill-posed correspondence problem to be solved. The resulting model behaves plausibly for a variety of different stimuli.


Sign in / Sign up

Export Citation Format

Share Document