Squeezing quantum noise in a full scale gravitational wave interferometer

Author(s):  
S Dwyer

The Les Houches Summer School 2015 covered the emerging fields of cavity optomechanics and quantum nanomechanics. Optomechanics is flourishing and its concepts and techniques are now applied to a wide range of topics. Modern quantum optomechanics was born in the late 70s in the framework of gravitational wave interferometry, initially focusing on the quantum limits of displacement measurements. Carlton Caves, Vladimir Braginsky, and others realized that the sensitivity of the anticipated large-scale gravitational-wave interferometers (GWI) was fundamentally limited by the quantum fluctuations of the measurement laser beam. After tremendous experimental progress, the sensitivity of the upcoming next generation of GWI will effectively be limited by quantum noise. In this way, quantum-optomechanical effects will directly affect the operation of what is arguably the world’s most impressive precision experiment. However, optomechanics has also gained a life of its own with a focus on the quantum aspects of moving mirrors. Laser light can be used to cool mechanical resonators well below the temperature of their environment. After proof-of-principle demonstrations of this cooling in 2006, a number of systems were used as the field gradually merged with its condensed matter cousin (nanomechanical systems) to try to reach the mechanical quantum ground state, eventually demonstrated in 2010 by pure cryogenic techniques and a year later by a combination of cryogenic and radiation-pressure cooling. The book covers all aspects—historical, theoretical, experimental—of the field, with its applications to quantum measurement, foundations of quantum mechanics and quantum information. Essential reading for any researcher in the field.


Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Tomohiro Ishikawa ◽  
Shoki Iwaguchi ◽  
Yuta Michimura ◽  
Masaki Ando ◽  
Rika Yamada ◽  
...  

The DECi-hertz Interferometer Gravitational-wave Observatory (DECIGO) is the future Japanese, outer space gravitational wave detector. We previously set the default design parameters to provide a good target sensitivity to detect the primordial gravitational waves (GWs). However, the updated upper limit of the primordial GWs by the Planck observations motivated us toward further optimization of the target sensitivity. Previously, we had not considered optical diffraction loss due to the very long cavity length. In this paper, we optimize various DECIGO parameters by maximizing the signal-to-noise ratio (SNR) of the primordial GWs to quantum noise, including the effects of diffraction loss. We evaluated the power spectrum density for one cluster in DECIGO utilizing the quantum noise of one differential Fabry–Perot interferometer. Then we calculated the SNR by correlating two clusters in the same position. We performed the optimization for two cases: the constant mirror-thickness case and the constant mirror-mass case. As a result, we obtained the SNR dependence on the mirror radius, which also determines various DECIGO parameters. This result is the first step toward optimizing the DECIGO design by considering the practical constraints on the mirror dimensions and implementing other noise sources.


2000 ◽  
Vol 71 (5) ◽  
pp. 2206-2210 ◽  
Author(s):  
G. Cagnoli ◽  
L. Gammaitoni ◽  
J. Kovalik ◽  
F. Marchesoni ◽  
M. Punturo

2019 ◽  
Vol 224 ◽  
pp. 03012
Author(s):  
Vadim Il’chenko

Based on the principle of Equivalence of Gravitating Masses (EGM) and tectonostratigraphic model of the Earth outer shell structure (the Earth crust and upper mantle), the average depth of the lunar mass gravitational influence on the Earth was calculated as ~1600 km. The developed model is based on the mechanism of rocks tectonic layering of the Earth crust-mantle shell as an oscillatory system with dynamic conditions of a standing wave, regularly excited by the lunar tide and immediately passing into the damping mode. After comparing the average depth of solid lunar tide impact of ~1600 km with the height of the solid lunar tide “hump” on the Earth surface of 0.5 m, a “tensile strain” was calculated with an amplitude only one order of magnitude larger than the amplitude of the gravitational wave recorded by the Advanced LIGO interferometer: A≈10-18 m (the merger result of a black holes pair ca 1.3 Ga ago). The results of the present study suggest that the crust-mantle shell of the Earth may be used as a gravitational-wave interferometer.


Sign in / Sign up

Export Citation Format

Share Document