Experimental investigation of the quality of transmission in transparent mesh networks with mixed fiber types

Author(s):  
Pascal Henri ◽  
Christian Simonneau ◽  
Florence Leplingard ◽  
Jean-Christophe Antona ◽  
Laurence Lorcy
Author(s):  
Arsalan Ahmad ◽  
Andrea Bianco ◽  
Vittorio Curri ◽  
Guido Marchetto ◽  
Sarosh Tahir

<p>This paper investigates transparent wavelength routed optical networks using three different fiber types NZDSF, SMF and PSCF - and validates the effectiveness of Hybrid Raman/EDFA Fiber Amplification (HFA) with different pumping levels, up to the moderate 60% pumping regime. Nodes operate on the basis of flexible-grid elastic NyWDM transponders able to adapt the modulation format to the quality-of-transmission of the available lightpath, exploiting up to five 12.5 GHz spectral slots. Results consider a 37- node Pan-European network for variable Raman pumping level, span length and average traffic per node. We show that HFA in moderate pumping regime reduces the power consumption and enhances spectral efficiency for all three fiber types with particular evidence in NZDSF. In essence to that, introduction of HFA is also beneficial to avoid blocking for higher traffic loads.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
D. J. Ives ◽  
S. Yan ◽  
L. Galdino ◽  
R. Wang ◽  
D. J. Elson ◽  
...  

AbstractThe management of wavelength routed optical mesh networks is complex with many potential light path routes and numerous physical layer impairments to transmission performance. This complexity can be reduced by applying the ideas of abstraction from computer science where different equipment is described in the same basic terms. The noise-to-signal ratio can be used as a metric to describe the quality of transmission performance of a signal propagated through a network element and accumulates additively through a sequence of such elements allowing the estimation of end-to-end performance. This study aims to explore the robustness of the noise-to-signal ratio metric in an installed fibre infrastructure. We show that the abstracted noise-to-signal ratio is independent of the observers and their location. We confirm that the abstracted noise-to-signal ratio can reasonably predict the performance of light-paths subsequently set in our network. Having a robust network element abstraction that can be incorporated into routeing engines allows the network management controller to make decisions on the most effective way to use the network resources in terms of the routeing and data coding format.


The feasibility and utility of long-distance communication via Earth-orbiting satellites has been demonstrated during recent years and it is appropriate therefore to focus attention on the more important scientific studies and technical developments that will be needed if full use is to be made of this valuable mode of communication in the future. The early communication satellites (the Telstar and Relay series) were pioneers in a relatively unknown propagation environment. The satellites themselves were conceptually simple and the communication equipment consisted essentially of a frequency-changing transponder with an r. f. power output of a few watts and a bandwidth some tens of megahertz. Carrier frequencies in the range 2 to 6 GHz were employed; typically either 2 or 6 GHz was used for transmission and 4 GHz for reception at the Earth station. To obtain an adequate signal/noise ratio at the output of the Earth station receiver, frequency modulation was employed, the frequency deviations being greater than those used on terrestrial microwave links. Launcher limitations and other factors meant that the satellites had to be placed in inclined elliptical orbits (see figure 1) with maximum heights of only a few thousand miles. Nevertheless, these satellites demonstrated that some hundreds of frequency-division multiplex telephony circuits, or a television channel, could be achieved with generally satisfactory quality of transmission. It is to be noted, however, that the satellite transponders accommodated only one, or at the most two, r. f. carriers at any time, and that the transmission performance was at times marginal due to limitations of the satellite effective radiated power. Furthermore, these relatively low orbit satellites provided communication in periods of generally less than an hour at a time and required continuous tracking by the Earth station aerials, due to movement of the satellites relative to the Earth.


Author(s):  
Konstantinos Christodoulopoulos ◽  
Ippokratis Sartzetakis ◽  
Polizois Soumplis ◽  
Emmanouel Varvarigos

2021 ◽  
Vol 3 (1) ◽  
pp. 1-10
Author(s):  
Smys S ◽  
Wang Haoxiang

Various industrial, scientific and commercial processes involve wireless mesh networks in the recent days. These technologies improve communication technology to a large extent which has led to an increase in utilization of these systems in various fields. In application with intense and complex data flow, improving the quality of service (QoS) has been a challenge and a focus of research leading to more advanced wireless communication systems. This paper provides a novel optimization algorithm for improving the QoS in hybrid wireless networks while preventing malware and routing attacks. The concept of QoS and hybrid wireless networks are examined at the initial stage. Further, the algorithm for optimizing the service quality in the network is proposed accordingly. The ability of data transfer is benefited by data packets in this algorithm. Load distribution is performed such that overcrowding is prevented and information routing is done efficiently though the nodes. Delay or routing is created and control messages are sent for withholding data when certain nodes are overcrowded. This reduces the delay created by overcrowding by 50% while maintaining the permittivity.


2019 ◽  
Vol 01 (02) ◽  
pp. 103-115
Author(s):  
Durai Pandian M

The spread out of wireless mesh network has made possible the extended range of communication network that are impractical due to environmental changes in a wired access point, these wireless mesh network does not require much competence to set it up as it can be set very fast at a cheap rate, and the conveyancing of messages in it happens by selecting the shortest path, these wireless mesh built-in with irrepressible and invulnerable identities come with an endurance to temporary congestion and individual node failure. This results in an architecture providing a better coverage, flaw indulgent with higher bandwidth compared to other wireless distributed systems. But faces the limitation on power conservation. The battery activated mesh nodes loses their resources on perception, processing and transmission of the data’s, though these batteries or accumulators comes with energy regaining capability still draw backs show up as their nature of energy regaining are unexposed. So the performance analysis of fly wireless network which proposes a uninterrupted wireless mesh networks aims at providing a best measure of performance that is the best quality of service on the meshwork by providing an improved energy gleaning using potency segregation (IGPS) which empowers each node to have self- contained accumulation of energy achieving heightened adaption with energy consumption kept at a minimum. The gross functioning of the proposed is examined on the bases of delay and packet loss to prove the quality of service acquired.


Sign in / Sign up

Export Citation Format

Share Document