scholarly journals A Secure Optimization Algorithm for Quality-of-Service Improvement in Hybrid Wireless Networks

2021 ◽  
Vol 3 (1) ◽  
pp. 1-10
Author(s):  
Smys S ◽  
Wang Haoxiang

Various industrial, scientific and commercial processes involve wireless mesh networks in the recent days. These technologies improve communication technology to a large extent which has led to an increase in utilization of these systems in various fields. In application with intense and complex data flow, improving the quality of service (QoS) has been a challenge and a focus of research leading to more advanced wireless communication systems. This paper provides a novel optimization algorithm for improving the QoS in hybrid wireless networks while preventing malware and routing attacks. The concept of QoS and hybrid wireless networks are examined at the initial stage. Further, the algorithm for optimizing the service quality in the network is proposed accordingly. The ability of data transfer is benefited by data packets in this algorithm. Load distribution is performed such that overcrowding is prevented and information routing is done efficiently though the nodes. Delay or routing is created and control messages are sent for withholding data when certain nodes are overcrowded. This reduces the delay created by overcrowding by 50% while maintaining the permittivity.

Author(s):  
Ekata Mehul ◽  
Vikram Limaye

Securing a “Wireless Ad Hoc Network” (WAHN) is a major concern of network administrators. This is particularly so in case of the wireless networks due to their unique characteristics that varies from the traditional networks. For example, WAHN are vulnerable to internal as well as external attacks relatively easily, as compared with traditional networks, because of their ability to be accessible from anywhere within their range. Many solutions have been proposed in this area and they are also being continuously improved. Most of these solutions involve encryption; secure routing, quality of service, and so forth. However, each of these solutions is designed to operate in a particular situation; and it may fail to work successfully in other scenarios. This particular research work offers an alternate to improving the trustworthiness of the neighbourhood and securing the routing procedure. This security is achieved by dynamically computing the trust in neighbours and selecting the most secure route from the available ones for the data transfer. There is also a provision to detect the compromised node and virtually removing it from the network.


2015 ◽  
Vol 14 (6) ◽  
pp. 5809-5813
Author(s):  
Abhishek Prabhakar ◽  
Amod Tiwari ◽  
Vinay Kumar Pathak

Wireless security is the prevention of unauthorized access to computers using wireless networks .The trends in wireless networks over the last few years is same as growth of internet. Wireless networks have reduced the human intervention for accessing data at various sites .It is achieved by replacing wired infrastructure with wireless infrastructure. Some of the key challenges in wireless networks are Signal weakening, movement, increase data rate, minimizing size and cost, security of user and QoS (Quality of service) parameters... The goal of this paper is to minimize challenges that are in way of our understanding of wireless network and wireless network performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Mohammed Al-Maitah ◽  
Olena O. Semenova ◽  
Andriy O. Semenov ◽  
Pavel I. Kulakov ◽  
Volodymyr Yu. Kucheruk

Artificial intelligence is employed for solving complex scientific, technical, and practical problems. Such artificial intelligence techniques as neural networks, fuzzy systems, and genetic and evolutionary algorithms are widely used for communication systems management, optimization, and prediction. Artificial intelligence approach provides optimized results in a challenging task of call admission control, handover, routing, and traffic prediction in cellular networks. 5G mobile communications are designed as heterogeneous networks, whose important requirement is accommodating great numbers of users and the quality of service satisfaction. Call admission control plays a significant role in providing the desired quality of service. An effective call admission control algorithm is needed for optimizing the cellular network system. Many call admission control schemes have been proposed. The paper proposes a methodology for developing a genetic neurofuzzy controller for call admission in 5G networks. Performance of the proposed admission control is evaluated through computer simulation.


Sign in / Sign up

Export Citation Format

Share Document