scholarly journals Optimization of the signal-to-noise ratio of frequency-domain instrumentation for near-infrared spectro-imaging of the human brain

2003 ◽  
Vol 11 (21) ◽  
pp. 2717 ◽  
Author(s):  
Vlad Toronov ◽  
Enrico D'Amico ◽  
Dennis Hueber ◽  
Enrico Gratton ◽  
Beniamino Barbieri ◽  
...  
1999 ◽  
Vol 45 (9) ◽  
pp. 1621-1627 ◽  
Author(s):  
Jason J Burmeister ◽  
Mark A Arnold

Abstract Six putative measurement sites were evaluated for noninvasive sensing of blood glucose by first-overtone near-infrared spectroscopy. The cheek, lower lip, upper lip, nasal septum, tongue, and webbing tissue between the thumb and forefinger were examined. These sites were evaluated on the basis of their chemical and physical properties as they pertain to the noninvasive measurement of glucose. Critical features included the effective optical pathlength of aqueous material within the tissue and the percentage of body fat within the optical path. Aqueous optical paths of 5 mm are required to measure clinically relevant concentrations of glucose in the first-overtone region. All of the tested sites met this requirement. The percentage of body fat affects the signal-to-noise ratio of the measurement and must be minimized for reliable glucose sensing. The webbing tissue contains a considerable amount of fat tissue and is clearly the worse measurement site. All other sites possess substantially less fat, with the least amount of fat in tongue tissue. For this reason, the tongue provides spectra with the highest signal-to-noise ratio and is, therefore, the site of choice on the basis of spectral quality.


The Analyst ◽  
2016 ◽  
Vol 141 (12) ◽  
pp. 3601-3620 ◽  
Author(s):  
Chengli Wang ◽  
Xiaomin Li ◽  
Fan Zhang

Upconversion nanoparticles (UCNPs), which can emit ultraviolet/visible (UV/Vis) light under near-infrared (NIR) excitation, are regarded as a new generation of nanoprobes because of their unique optical properties, including a virtually zero auto-fluorescence background for the improved signal-to-noise ratio, narrow emission bandwidths and high resistance to photo-bleaching.


2018 ◽  
Vol 67 (4) ◽  
pp. 647-654 ◽  
Author(s):  
A. V. Manzhurtsev ◽  
N. A. Semenova ◽  
T. A. Akhadov ◽  
O. V. Bozhko ◽  
S. D. Varfolomeev

2019 ◽  
Vol 11 (2) ◽  
pp. 270-277
Author(s):  
Hussein Abdullah Leftah ◽  
Husham Lateef Swadi

Impulsive noise is considered as one of the major source of disturbance in the state-of-the-art multicarrier (MC) communication systems. Therefore, several techniques are being constantly proposed to eliminate the effect of such noise. In this work, a time domain matrix interleaved is compiled with a single carrier frequency domain equalizer (SC-FDE) is proposed to reduce the deleterious effects of impulsive noise. A mathematical model for the proposed scheme is also presented in this paper. Simulation results show that the proposed technique superiors the interleaved multicarrier system where the proposed scheme can completely avoid the error floors not only at high signal-to-noise ratio (SNR) but also at heavily distributed impulsive noise. The bit-error-rate (BER) of the alternative proposed scheme decreases as the signal-to-noise ratio (SNR) increases whereas the BER of the standard system suffers from error-floors with a constant BER at about 10-3 for about 8 dB SNR for medium and heavily impulsive noise.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 556
Author(s):  
Yuri Yoshida ◽  
Takumi Kawana ◽  
Eiichi Hoshino ◽  
Yasuyo Minagawa ◽  
Norihisa Miki

We demonstrate capture of event-related potentials (ERPs) using candle-like dry microneedle electrodes (CMEs). CMEs can record an electroencephalogram (EEG) even from hairy areas without any skin preparation, unlike conventional wet electrodes. In our previous research, we experimentally verified that CMEs can measure the spontaneous potential of EEG from the hairy occipital region without preparation with a signal-to-noise ratio as good as that of the conventional wet electrodes which require skin preparation. However, these results were based on frequency-based signals, which are relatively robust compared to noise contamination, and whether CMEs are sufficiently sensitive to capture finer signals remained unclear. Here, we first experimentally verified that CMEs can extract ERPs as good as conventional wet electrodes without preparation. In the auditory oddball tasks using pure tones, P300, which represent ERPs, was extracted with a signal-to-noise ratio as good as that of conventional wet electrodes. CMEs successfully captured perceptual activities. Then, we attempted to investigate cerebral cognitive activity using ERPs. In processing the vowel and prosody in auditory stimuli such as /itta/, /itte/, and /itta?/, laterality was observed that originated from the locations responsible for the process in near-infrared spectroscopy (NIRS) and magnetoencephalography experiments. We simultaneously measured ERPs with CMEs and NIRS in the oddball tasks using the three words. Laterality appeared in NIRS for six of 10 participants, although laterality was not clearly shown in the results, suggesting that EEGs have a limitation of poor spatial resolution. On the other hand, successful capturing of MMN and P300 using CMEs that do not require skin preparation may be readily applicable for real-time applications of human perceptual activities.


Sign in / Sign up

Export Citation Format

Share Document