error floors
Recently Published Documents


TOTAL DOCUMENTS

79
(FIVE YEARS 5)

H-INDEX

13
(FIVE YEARS 1)

2020 ◽  
Vol 13 (6) ◽  
pp. 454-459
Author(s):  
Nam-Soo Kim ◽  

Outage probability and capacity are the representative performance measures for the quality of service (QoS) in mobile cellular systems. Recently, power back-off scheme is proposed in uplink non-orthogonal multiple access (NOMA) systems. The power back-off scheme improves the performance of a near user, however, decreases that of a far user. In comparison, the scheme indicates the error floors with an outage probability of 2.4×〖10〗^(-1) and 9.1×〖10〗^(-2) with power back-off 5 dB and 10 dB, respectively under the specified condition. To address these drawbacks, we propose an equal average signal-to–interference plus noise ratio (SINR) scheme that derives the same average SINR from active users at the base station (BS) in uplink non-orthogonal multiple access (NOMA) systems. Numerical results show that required signal-to-noise ratio (SNR) for the outage probability of 1×〖10〗^(-3) of the near and far users are close enough within 1 dB, which means an outage balance between two users. And it is noticed that the outage probabilities in the proposed scheme decrease as the increase of the received SNR without error floors. Also, different from the power back-off scheme, we noticed that the capacities of the two users in the proposed scheme are coincident and increase with SNR. The outage probabilities and ergodic capacity of the near and far users are derived in closed-form expressions. The analytical results are conformed by Monte Carlo simulation.


2020 ◽  
Vol 68 (4) ◽  
pp. 2005-2015
Author(s):  
Homayoon Hatami ◽  
David G. M. Mitchell ◽  
Daniel J. Costello ◽  
Thomas E. Fuja
Keyword(s):  

2020 ◽  
Vol 68 (3) ◽  
pp. 1344-1357
Author(s):  
Hosung Park ◽  
Hee-Youl Kwak ◽  
Seokbeom Hong ◽  
Jong-Seon No ◽  
Dong-Joon Shin

Entropy ◽  
2019 ◽  
Vol 21 (7) ◽  
pp. 633 ◽  
Author(s):  
Josu Etxezarreta Martinez ◽  
Pedro M. Crespo ◽  
Javier Garcia-Frías

Quantum turbo codes (QTC) have shown excellent error correction capabilities in the setting of quantum communication, achieving a performance less than 1 dB away from their corresponding hashing bounds. Existing QTCs have been constructed using uniform random interleavers. However, interleaver design plays an important role in the optimization of classical turbo codes. Consequently, inspired by the widely used classical-to-quantum isomorphism, this paper studies the integration of classical interleaving design methods into the paradigm of quantum turbo coding. Simulations results demonstrate that error floors in QTCs can be lowered significantly, while decreasing memory consumption, by proper interleaving design without increasing the overall decoding complexity of the system.


2019 ◽  
Vol 11 (2) ◽  
pp. 270-277
Author(s):  
Hussein Abdullah Leftah ◽  
Husham Lateef Swadi

Impulsive noise is considered as one of the major source of disturbance in the state-of-the-art multicarrier (MC) communication systems. Therefore, several techniques are being constantly proposed to eliminate the effect of such noise. In this work, a time domain matrix interleaved is compiled with a single carrier frequency domain equalizer (SC-FDE) is proposed to reduce the deleterious effects of impulsive noise. A mathematical model for the proposed scheme is also presented in this paper. Simulation results show that the proposed technique superiors the interleaved multicarrier system where the proposed scheme can completely avoid the error floors not only at high signal-to-noise ratio (SNR) but also at heavily distributed impulsive noise. The bit-error-rate (BER) of the alternative proposed scheme decreases as the signal-to-noise ratio (SNR) increases whereas the BER of the standard system suffers from error-floors with a constant BER at about 10-3 for about 8 dB SNR for medium and heavily impulsive noise.


2017 ◽  
Vol 53 (4) ◽  
pp. 247-249 ◽  
Author(s):  
J. Lim ◽  
D.‐J. Shin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document