scholarly journals Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides

2009 ◽  
Vol 17 (13) ◽  
pp. 11107 ◽  
Author(s):  
Martin T. Hill ◽  
Milan Marell ◽  
Eunice S. P. Leong ◽  
Barry Smalbrugge ◽  
Youcai Zhu ◽  
...  
2021 ◽  
Vol 11 (4) ◽  
pp. 1544
Author(s):  
Meguya Ryu ◽  
Yoshiaki Nishijima ◽  
Shinya Morimoto ◽  
Naoki To ◽  
Tomoki Hashizume ◽  
...  

The four polarisation method is adopted for measurement of molecular orientation in dielectric nanolayers of metal-insulator-metal (MIM) metamaterials composed of gold nanodisks on polyimide and gold films. Hyperspectral mapping at the chemical finger printing spectral range of 4–20 μμm was carried out for MIM patterns of 1–2.5 μμm period (sub-wavelength). Overlay images taken at 0,π4,π2,3π4 orientation angles and subsequent baseline compensation are shown to be critically important for the interpretation of chemical mapping results and reduction of spurious artefacts. Light field enhancement in the 60-nm-thick polyimide (I in MIM) was responsible for strong absorption at the characteristic polyimide bands. Strong absorbance A at narrow IR bands can be used as a thermal emitter (emittance E=1−R), where R is the reflectance and A=1−R−T, where for optically thick samples the transmittance is T=0.


2014 ◽  
Vol 28 (04) ◽  
pp. 1450025 ◽  
Author(s):  
XIANKUN YAO

In this paper, we have numerically investigated a novel kind of ultra-compact wavelength demultiplexing (WDM) in high-confined metal–insulator–metal (MIM) plasmonic waveguides. It is found that the drop transmission efficiency of the filtering cavity can be strongly enhanced by introducing a side-coupled cavity in the MIM waveguide. The theoretical analysis is verified by the finite-difference time-domain simulations. Through cascading the filtering units, a highly effective triple-wavelength demultiplexer is proposed by selecting the specific separation between the two coupled cavities of filtering units. Our results may find potential applications for the nanoscale WDM systems in highly integrated optical circuits and networks.


Nanophotonics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 823-832 ◽  
Author(s):  
Amir Ghobadi ◽  
Hodjat Hajian ◽  
Murat Gokbayrak ◽  
Bayram Butun ◽  
Ekmel Ozbay

AbstractIn recent years, sub-wavelength metamaterials-based light perfect absorbers have been the subject of many studies. The most frequently utilized absorber configuration is based on nanostructured plasmonic metals. However, two main drawbacks were raised for this design architecture. One is the fabrication complexity and large scale incompatibility of these nano units. The other one is the inherent limitation of these common metals which mostly operate in the visible frequency range. Recently, strong interference effects in lithography-free planar multilayer designs have been proposed as a solution for tackling these drawbacks. In this paper, we reveal the extraordinary potential of bismuth (Bi) metal in achieving light perfect absorption in a planar design through a broad wavelength regime. For this aim, we adopted a modeling approach based on the transfer matrix method (TMM) to find the ideal conditions for light perfect absorption. According to the findings of our modeling and numerical simulations, it was demonstrated that the use of Bi in the metal-insulator-metal-insulator (MIMI) configuration can simultaneously provide two distinct functionalities; a narrow near unity reflection response and an ultra-broadband near perfect absorption. The reflection behavior can be employed to realize additive color filters in the visible range, while the ultra-broadband absorption response of the design can fully harvest solar irradiation in the visible and near infrared (NIR) ranges. The findings of this paper demonstrate the extraordinary potential of Bi metal for the design of deep sub-wavelength optical devices.


2014 ◽  
Vol 2 (3) ◽  
pp. 35 ◽  
Author(s):  
M. Talafi Noghani ◽  
M. H. Vadjed Samiei

Propagation characteristics of symmetrical and asymmetrical multilayer hybrid insulator-metal-insulator (HIMI) and metal-insulator-metal (HMIM) plasmonic slab waveguides are investigated using the transfer matrix method. Propagation length (Lp) and spatial length (Ls) are used as two figures of merit to qualitate the plasmonic waveguides. Symmetrical structures are shown to be more performant (having higher Lp and lower Ls), nevertheless it is shown that usage of asymmetrical geometry could compensate for the performance degradation in practically realized HIMI waveguides with different substrate materials. It is found that HMIM slab waveguide could support almost long-range subdiffraction plasmonic modes at dimensions lower than the spatial length of the HIMI slab waveguide.


2008 ◽  
Vol 16 (19) ◽  
pp. 14902 ◽  
Author(s):  
Jing Chen ◽  
Gennady A. Smolyakov ◽  
Steven R. Brueck ◽  
Kevin J. Malloy

Plasmonics ◽  
2012 ◽  
Vol 8 (2) ◽  
pp. 613-618 ◽  
Author(s):  
Vahagn Mkhitaryan ◽  
Arsen Babajanyan ◽  
Khachatur Nerkararyan ◽  
Kiejin Lee ◽  
Barry Friedman

2020 ◽  
Vol 8 (18) ◽  
pp. 2000609
Author(s):  
Angelica Carrara ◽  
Nicolò Maccaferri ◽  
Andrea Cerea ◽  
Angelo Bozzola ◽  
Francesco De Angelis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document