scholarly journals Femtosecond free-electron laser x-ray diffraction data sets for algorithm development

2012 ◽  
Vol 20 (4) ◽  
pp. 4149 ◽  
Author(s):  
Stephan Kassemeyer ◽  
Jan Steinbrener ◽  
Lukas Lomb ◽  
Elisabeth Hartmann ◽  
Andrew Aquila ◽  
...  
2019 ◽  
Vol 75 (2) ◽  
pp. 234-241
Author(s):  
Monarin Uervirojnangkoorn ◽  
Artem Y. Lyubimov ◽  
Qiangjun Zhou ◽  
William I. Weis ◽  
Axel T. Brunger

Processing X-ray free-electron laser (XFEL) diffraction images poses challenges, as an XFEL pulse is powerful enough to destroy or damage the diffracting volume and thereby yields only one diffraction image per volume. Moreover, the crystal is stationary during the femtosecond pulse, so reflections are generally only partially recorded. Therefore, each XFEL diffraction image must be scaled individually and, ideally, corrected for partiality prior to merging. An additional complication may arise owing to indexing ambiguities when the symmetry of the Bravais lattice is higher than that of the space group, or when the unit-cell dimensions are similar to each other. Here, an automated method is presented that diagnoses these indexing ambiguities based on the Brehm–Diederichs algorithm [Brehm & Diederichs (2014), Acta Cryst. D70, 101–109] and produces a consistent indexing choice for the large majority of diffraction images. This method was applied to an XFEL diffraction data set measured from crystals of the neuronal SNARE–complexin-1–synaptotagmin-1 complex. After correcting the indexing ambiguities, substantial improvements were observed in the merging statistics and the atomic model refinement R values. This method should be a useful addition to the arsenal of tools for the processing of XFEL diffraction data sets.


2017 ◽  
Vol 73 (9) ◽  
pp. 729-737 ◽  
Author(s):  
Andrea Thorn ◽  
James Parkhurst ◽  
Paul Emsley ◽  
Robert A. Nicholls ◽  
Melanie Vollmar ◽  
...  

In this paper,AUSPEX, a new software tool for experimental X-ray data analysis, is presented. Exploring the behaviour of diffraction intensities and the associated estimated uncertainties facilitates the discovery of underlying problems and can help users to improve their data acquisition and processing in order to obtain better structural models. The program enables users to inspect the distribution of observed intensities (or amplitudes) against resolution as well as the associated estimated uncertainties (sigmas). It is demonstrated howAUSPEXcan be used to visually and automatically detect ice-ring artefacts in integrated X-ray diffraction data. Such artefacts can hamper structure determination, but may be difficult to identify from the raw diffraction images produced by modern pixel detectors. The analysis suggests that a significant portion of the data sets deposited in the PDB contain ice-ring artefacts. Furthermore, it is demonstrated how other problems in experimental X-ray data caused, for example, by scaling and data-conversion procedures can be detected byAUSPEX.


2014 ◽  
Vol 112 (8) ◽  
Author(s):  
Jochen Küpper ◽  
Stephan Stern ◽  
Lotte Holmegaard ◽  
Frank Filsinger ◽  
Arnaud Rouzée ◽  
...  

2012 ◽  
Vol 46 (1) ◽  
pp. 108-119 ◽  
Author(s):  
Simon W. M. Tanley ◽  
Antoine M. M. Schreurs ◽  
John R. Helliwell ◽  
Loes M. J. Kroon-Batenburg

The International Union of Crystallography has for many years been advocating archiving of raw data to accompany structural papers. Recently, it initiated the formation of the Diffraction Data Deposition Working Group with the aim of developing standards for the representation of these data. A means of studying this issue is to submit exemplar publications with associated raw data and metadata. A recent study on the effects of dimethyl sulfoxide on the binding of cisplatin and carboplatin to histidine in 11 different lysozyme crystals from two diffractometers led to an investigation of the possible effects of the equipment and X-ray diffraction data processing software on the calculated occupancies andBfactors of the bound Pt compounds. 35.3 Gb of data were transferred from Manchester to Utrecht to be processed withEVAL. A systematic comparison shows that the largest differences in the occupancies andBfactors of the bound Pt compounds are due to the software, but the equipment also has a noticeable effect. A detailed description of and discussion on the availability of metadata is given. By making these raw diffraction data sets availableviaa local depository, it is possible for the diffraction community to make their own evaluation as they may wish.


IUCrJ ◽  
2017 ◽  
Vol 4 (5) ◽  
pp. 560-568 ◽  
Author(s):  
Carsten Fortmann-Grote ◽  
Alexey Buzmakov ◽  
Zoltan Jurek ◽  
Ne-Te Duane Loh ◽  
Liubov Samoylova ◽  
...  

Single-particle imaging with X-ray free-electron lasers (XFELs) has the potential to provide structural information at atomic resolution for non-crystalline biomolecules. This potential exists because ultra-short intense pulses can produce interpretable diffraction data notwithstanding radiation damage. This paper explores the impact of pulse duration on the interpretability of diffraction data using comprehensive and realistic simulations of an imaging experiment at the European X-ray Free-Electron Laser. It is found that the optimal pulse duration for molecules with a few thousand atoms at 5 keV lies between 3 and 9 fs.


Author(s):  
Robert J. Trachman ◽  
Jason R. Stagno ◽  
Chelsie Conrad ◽  
Christopher P. Jones ◽  
Pontus Fischer ◽  
...  

Turn-on aptamers are in vitro-selected RNAs that bind to conditionally fluorescent small molecules and enhance their fluorescence. Upon binding TO1-biotin, the iMango-III aptamer achieves the largest fluorescence enhancement reported for turn-on aptamers (over 5000-fold). This aptamer was generated by structure-guided engineering and functional reselection of the parental aptamer Mango-III. Structures of both Mango-III and iMango-III have previously been determined by conventional cryocrystallography using synchrotron X-radiation. Using an X-ray free-electron laser (XFEL), the room-temperature iMango-III–TO1-biotin co-crystal structure has now been determined at 3.0 Å resolution. This structural model, which was refined against a data set of ∼1300 diffraction images (each from a single crystal), is largely consistent with the structures determined from single-crystal data sets collected at 100 K. This constitutes a technical benchmark on the way to XFEL pump–probe experiments on fluorescent RNA–small molecule complexes.


1991 ◽  
Vol 35 (A) ◽  
pp. 333-340 ◽  
Author(s):  
W.N. Schreiner ◽  
R. Jenkins ◽  
P.F. Dismore

During the course of the past ten years the International Centre for Diffraction Data has sponsored a number of “Round Robin” tests to evaluate the quality of experimental X-ray diffraction data [1-5]. The latest of this series, called the Instrument Parameter Round Robin, was designed to evaluate, among other things, relative angularly-dependent sensitivity differences between diffractometers. Previous experiments have indicated that even perfectly aligned diffractometers of the same generic type, do not necessarily give the same set of relative intensities. One objective of the round robin was to quantify the magnitude of the experimental differences between data sets, and to demonstrate a means for external calibration of diffractometers, so that digitized diffraction intensity data obtained from different instruments could be directly compared.


Sign in / Sign up

Export Citation Format

Share Document