scholarly journals GaAs based long-wavelength microring resonator optical switches utilising bias assisted carrier-injection induced refractive index change

2012 ◽  
Vol 20 (14) ◽  
pp. 15610 ◽  
Author(s):  
Sooraj Ravindran ◽  
Arnab Datta ◽  
Kamal Alameh ◽  
Yong Tak Lee
2012 ◽  
Vol 462 ◽  
pp. 375-379
Author(s):  
B. Mardiana ◽  
A.R. Hanim ◽  
H. Hazura ◽  
S. Shaari ◽  
P. Susthitha Menon ◽  
...  

Micro-ring resonator based on silicon-on-insulator (SOI) has been extensively studied due to its many advantages, thus promising to improve the optoelectronic integrated circuit performance. This paper highlights the study of the free carrier injection effect on the silicon rib waveguide with p-i-n diode structure integrated in the SOI micro-ring resonator. The free carrier concentrations have been modulated by the electrical signal that can cause change of refractive index of the micro-ring resonator. The device performances are predicted by using numerical modelling software 2D SILVACO and Finite Difference Time Domain method simulation software RSOFT. The results show the change of refractive index is maximized at a greater applied voltage. A shift in resonant wavelength of around 6.7 nm was predicted at 0.9V with 1.14x10-3refractive index change. It is also shown that 8.5dB change of the output response obtained through the output.


1987 ◽  
Vol 50 (3) ◽  
pp. 141-142 ◽  
Author(s):  
K. Ishida ◽  
H. Nakamura ◽  
H. Matsumura ◽  
T. Kadoi ◽  
H. Inoue

2011 ◽  
Vol 403-408 ◽  
pp. 758-761
Author(s):  
B. Mardiana ◽  
A.R. Hanim ◽  
H. Hazura ◽  
S. Shaari ◽  
P. Susthitha Menon ◽  
...  

This paper highlights the study of the free carrier injection effect on the active SOI optical ring resonator. The effect of the free carrier injection on optical ring resonator was evaluated by varying the p+ and n+ doping concentrations. The device performances are predicted by using numerical modelling software of the 2D SILVACO and Finite Difference Time Domain method simulation software RSOFT. The results show the refractive index change increases as the p+and n+doping concentrations is getting higher. A shift in resonant wavelength of around 2 nm was predicted at 5x1019cm3p+and n+doping concentrations with 5.8x10-3refractive index change. It is also shown that 8.2dB change of the output response obtained through the output.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guangzhong Ma ◽  
Runli Liang ◽  
Zijian Wan ◽  
Shaopeng Wang

AbstractQuantification of molecular interactions on a surface is typically achieved via label-free techniques such as surface plasmon resonance (SPR). The sensitivity of SPR originates from the characteristic that the SPR angle is sensitive to the surface refractive index change. Analogously, in another interfacial optical phenomenon, total internal reflection, the critical angle is also refractive index dependent. Therefore, surface refractive index change can also be quantified by measuring the reflectivity near the critical angle. Based on this concept, we develop a method called critical angle reflection (CAR) imaging to quantify molecular interactions on glass surface. CAR imaging can be performed on SPR imaging setups. Through a side-by-side comparison, we show that CAR is capable of most molecular interaction measurements that SPR performs, including proteins, nucleic acids and cell-based detections. In addition, we show that CAR can detect small molecule bindings and intracellular signals beyond SPR sensing range. CAR exhibits several distinct characteristics, including tunable sensitivity and dynamic range, deeper vertical sensing range, fluorescence compatibility, broader wavelength and polarization of light selection, and glass surface chemistry. We anticipate CAR can expand SPR′s capability in small molecule detection, whole cell-based detection, simultaneous fluorescence imaging, and broader conjugation chemistry.


Sign in / Sign up

Export Citation Format

Share Document