scholarly journals Non-contact printing of optical waveguides using capillary bridges

2018 ◽  
Vol 26 (9) ◽  
pp. 11934 ◽  
Author(s):  
Pius M. Theiler ◽  
Fabian Lütolf ◽  
Rolando Ferrini
Author(s):  
W. E. Lee

An optical waveguide consists of a several-micron wide channel with a slightly different index of refraction than the host substrate; light can be trapped in the channel by total internal reflection.Optical waveguides can be formed from single-crystal LiNbO3 using the proton exhange technique. In this technique, polished specimens are masked with polycrystal1ine chromium in such a way as to leave 3-13 μm wide channels. These are held in benzoic acid at 249°C for 5 minutes allowing protons to exchange for lithium ions within the channels causing an increase in the refractive index of the channel and creating the waveguide. Unfortunately, optical measurements often reveal a loss in waveguiding ability up to several weeks after exchange.


1985 ◽  
Vol 132 (6) ◽  
pp. 314 ◽  
Author(s):  
J.M. Arnold ◽  
A. Belghoraf ◽  
A. Dendane

2003 ◽  
Vol 762 ◽  
Author(s):  
Hwang Huh ◽  
Jung H. Shin

AbstractAmorphous silicon (a-Si) films prepared on oxidized silicon wafer were crystallized to a highly textured form using contact printing of rolled and annealed nickel tapes. Crystallization was achieved by first annealing the a-Si film in contact with patterned Ni tape at 600°C for 20 min in a flowing forming gas (90 % N2, 10 % H2) environment, then removing the Ni tape and further annealing the a-Si film in vacuum for2hrsat600°C. An array of crystalline regions with diameters of up to 20 μm could be formed. Electron microscopy indicates that the regions are essentially single-crystalline except for the presence of twins and/or type A-B formations, and that all regions have the same orientation in all 3 directions even when separated by more than hundreds of microns. High resolution TEM analysis shows that formation of such orientation-controlled, nearly single crystalline regions is due to formation of nearly single crystalline NiSi2 under the point of contact, which then acts as the template for silicide-induced lateral crystallization. Furthermore, the orientation relationship between Si grains and Ni tape is observed to be Si (110) || Ni (001)


1975 ◽  
Vol 11 (22) ◽  
pp. 534
Author(s):  
Shojiro Kawakami ◽  
Shigeo Nishida
Keyword(s):  

1980 ◽  
Vol 16 (11) ◽  
pp. 440 ◽  
Author(s):  
D.N. MacFadyen ◽  
C.R. Stanley ◽  
C.D.W. Wilkinson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document