scholarly journals Multi-source high-resolution satellite products in Yangtze Estuary: cross-comparisons and impacts of signal-to-noise ratio and spatial resolution

2019 ◽  
Vol 27 (5) ◽  
pp. 6426 ◽  
Author(s):  
Rugang Tang ◽  
Fang Shen ◽  
Yanqun Pan ◽  
Kevin Ruddick ◽  
Pei Shang
Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2598
Author(s):  
Min Kim ◽  
Jinhyoung Park ◽  
Qifa Zhou ◽  
Koping Shung

In this article, an approach to designing and developing an ultrahigh frequency (≤600 MHz) ultrasound analog frontend with Golay coded excitation sequence for high resolution imaging applications is presented. For the purpose of visualizing specific structures or measuring functional responses of micron-sized biological samples, a higher frequency ultrasound is needed to obtain a decent spatial resolution while it lowers the signal-to-noise ratio, the difference in decibels between the signal level and the background noise level, due to the higher attenuation coefficient. In order to enhance the signal-to-noise ratio, conventional approach was to increase the transmit voltage level. However, it may cause damaging the extremely thin piezoelectric material in the ultrahigh frequency range. In this paper, we present a novel design of ultrahigh frequency (≤600 MHz) frontend system capable of performing pseudo Golay coded excitation by configuring four independently operating pulse generators in parallel and the consecutive delayed transmission from each channel. Compared with the conventional monocycle pulse approach, the signal-to-noise ratio of the proposed approach was improved by 7–9 dB without compromising the spatial resolution. The measured axial and lateral resolutions of wire targets were 16.4 µm and 10.6 µm by using 156 MHz 4 bit pseudo Golay coded excitation, respectively and 4.5 µm and 7.7 µm by using 312 MHz 4 bit pseudo Golay coded excitation, respectively.


1998 ◽  
Vol 39 (1) ◽  
pp. 60-63 ◽  
Author(s):  
T. Nishiharu ◽  
Y. Yamashita ◽  
I. Ogata ◽  
S. Sumi ◽  
K. Mitsuzaki ◽  
...  

Purpose: to compare the value of a retrospective targeted high-resolution spiral CT to the standard reconstruction technique in the assessment of pancreatic diseases Material and Methods: Spiral CT pancreatic images of a standard-size reconstruction protocol were compared prospectively with those of a retrospective targeted high-spatial-resolution reconstruction protocol in 30 patients. Prior to clinical evaluation, a phantom study was performed to evaluate the spatial resolution and signal-to-noise ratio of both protocols Results: the high-resolution protocol achieved a good signal-to-noise ratio with acceptable spatial resolution. Phantom studies revealed increased image noise (+17%) with an increase in spatial resolution (+100%). in patients studied with the high-resolution protocol, the increase in noise was not significant but there was a marked improvement in the definition of small details Conclusion: Images obtained with a targeted high-spatial-resolution reconstruction protocol showed superior lesion definition and vascular opacification compared with those obtained with a standard-size reconstruction protocol. This technique may have potential in the evaluation of small pancreatic abnormalities


2021 ◽  
Vol 15 ◽  
Author(s):  
Yao Sui ◽  
Onur Afacan ◽  
Ali Gholipour ◽  
Simon K. Warfield

The brain of neonates is small in comparison to adults. Imaging at typical resolutions such as one cubic mm incurs more partial voluming artifacts in a neonate than in an adult. The interpretation and analysis of MRI of the neonatal brain benefit from a reduction in partial volume averaging that can be achieved with high spatial resolution. Unfortunately, direct acquisition of high spatial resolution MRI is slow, which increases the potential for motion artifact, and suffers from reduced signal-to-noise ratio. The purpose of this study is thus that using super-resolution reconstruction in conjunction with fast imaging protocols to construct neonatal brain MRI images at a suitable signal-to-noise ratio and with higher spatial resolution than can be practically obtained by direct Fourier encoding. We achieved high quality brain MRI at a spatial resolution of isotropic 0.4 mm with 6 min of imaging time, using super-resolution reconstruction from three short duration scans with variable directions of slice selection. Motion compensation was achieved by aligning the three short duration scans together. We applied this technique to 20 newborns and assessed the quality of the images we reconstructed. Experiments show that our approach to super-resolution reconstruction achieved considerable improvement in spatial resolution and signal-to-noise ratio, while, in parallel, substantially reduced scan times, as compared to direct high-resolution acquisitions. The experimental results demonstrate that our approach allowed for fast and high-quality neonatal brain MRI for both scientific research and clinical studies.


2018 ◽  
Vol 28 (4) ◽  
pp. 1203-1215 ◽  
Author(s):  
Zhuqing Liu ◽  
Andreas J Bartsch ◽  
Veronica J Berrocal ◽  
Timothy D Johnson

Spatial resolution plays an important role in functional magnetic resonance imaging studies as the signal-to-noise ratio increases linearly with voxel volume. In scientific studies, where functional magnetic resonance imaging is widely used, the standard spatial resolution typically used is relatively low which ensures a relatively high signal-to-noise ratio. However, for pre-surgical functional magnetic resonance imaging analysis, where spatial accuracy is paramount, high-resolution functional magnetic resonance imaging may play an important role with its greater spatial resolution. High spatial resolution comes at the cost of a smaller signal-to-noise ratio. This begs the question as to whether we can leverage the higher signal-to-noise ratio of a standard functional magnetic resonance imaging study with the greater spatial accuracy of a high-resolution functional magnetic resonance imaging study in a pre-operative patient. To answer this question, we propose to regress the statistic image from a high resolution scan onto the statistic image obtained from a standard resolution scan using a mixed-effects model with spatially varying coefficients. We evaluate our model via simulation studies and we compare its performance with a recently proposed model that operates at a single spatial resolution. We apply and compare the two models on data from a patient awaiting tumor resection. Both simulation study results and the real data analysis demonstrate that our newly proposed model indeed leverages the larger signal-to-noise ratio of the standard spatial resolution scan while maintaining the advantages of the high spatial resolution scan.


Author(s):  
Timur Gureyev ◽  
David M. Paganin ◽  
Alex Kozlov ◽  
Harry Quiney

2002 ◽  
Vol 47 (4) ◽  
pp. 687-695 ◽  
Author(s):  
Jim M. Wild ◽  
Martyn N.J. Paley ◽  
Magalie Viallon ◽  
Wolfgang G. Schreiber ◽  
Edwin J.R. van Beek ◽  
...  

2008 ◽  
Vol 55 (3) ◽  
pp. 842-852 ◽  
Author(s):  
M.C. Maas ◽  
D.R. Schaart ◽  
D.J. van der Laan ◽  
H.T. van Dam ◽  
J. Huizenga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document