scholarly journals Two phase transitions in PbZnO3 at high pressure and the theoretical study of plasmons properties of PbZnO3 quantum dots

2019 ◽  
Vol 27 (12) ◽  
pp. 16586 ◽  
Author(s):  
Tong Liu ◽  
Hong Zhang ◽  
Xinlu Cheng
2014 ◽  
Vol 1004-1005 ◽  
pp. 1608-1614 ◽  
Author(s):  
Xi Duo Hu ◽  
De Hai Zhu ◽  
Zhi Feng Zeng ◽  
Shao Rui Sun

We performed the first-principle calculation to study the structures of cinnabar phase and the Cinnabar-to-rocksalt Phase transitions of HgTe and CdTe under high pressure. The calculated results show that for HgTe, the zincblende-to-cinnabar phase transition is under 2.2GPa, and the cinnabar-to-rocksalt phase transition is under 5.5 GPa; For CdTe, the two phase transitions occur under 4.0 GPa and 4.9 GPa, respectively, which well agree with the experimental results. The cinnabar-to-rocksalt phase transitions of most compounds, including HgTe and CdTe, except HgS are of first-order, and it is due to that their cinnabar phases are not chain structure as HgS and there are no relaxation process before the phase transition.


2003 ◽  
Vol 81 (1-2) ◽  
pp. 127-133 ◽  
Author(s):  
H Shimizu

Methane hydrate (MH) and argon hydrate (AH) single crystals were synthesized in a diamond anvil cell to investigate their intrinsic high-pressure properties by visual observation and in situ Raman and Brillouin-scattering measurements. Single crystalline MH shows clearly two phase transitions at P =0.9 and 1.9 GPa in its crystalline shape and state under a microscope, and in the change in its Raman spectra of C–H stretching vibrations of guest CH4 molecules. The first determination of the elastic properties in MH sI phase has revealed that MH is about 10% softer than the most common ice Ih, which is accounted for by MH's void-rich and open structures. For a single-crystal AH, we have observed two phase transitions from AH-I (sII) to AH-II at about P =0.65 GPa and from AH-II to AH-III at P =1.02 GPa. The breakdown of the cage structure in AH-III was confirmed by the disappearance of the O–H stretching mode of host H2O lattices. The possibility of Ar double occupancy in the large cages of sII and higher pressure phases is investigated by the low-frequency Raman peak observed around 120 ~ 140 cm–1 in view of recent MD calculations. PACS Nos.: 62.30+d, 62.50+p, 62.65+k, 64.70-p, 78.30-j, 78.35+c


2011 ◽  
Vol 67 (2) ◽  
pp. 109-115 ◽  
Author(s):  
David Santamaria-Perez ◽  
Angel Vegas ◽  
Claus Muehle ◽  
Martin Jansen

The high-pressure behaviour of dirubidium sulfide, Rb2S, with antifluorite-type structure under room conditions (space group Fm\bar 3 m) has been studied up to 8 GPa at room temperature using angle-dispersive X-ray powder diffraction in a diamond–anvil cell (DAC). X-ray measurements have allowed us to completely characterize two phase transitions upon compression: (i) to an anticotunnite-type structure (Pnma) at some pressure between 1 bar and 0.7 GPa, and (ii) to a Ni2In-type structure (P63/mmc) at 2.6 GPa. A gradual transition from the Pnma to the P63/mmc structures seems to occur between 2.6 and 4.5 GPa. These results are in excellent agreement with previous theoretical predictions. Strong luminescence is observed above 2.6 GPa (band maximum at 703 nm) when the transition to the Ni2In-type phase starts to occur, the band maximum showing a non-linear blue shift with pressure. The observed sequence of phase transitions in Rb2S is discussed in relation to the high-pressure structural behaviour of isomorphic sulfides and the structures are compared with the cationic arrays of their corresponding oxides (e.g. rubidium sulfate, in which the sulfide has been oxidized).


1990 ◽  
Vol 193 ◽  
Author(s):  
Troy W. Barbee ◽  
Alberto García ◽  
Marvin L. Cohen

ABSTRACTA study of the zero temperature phase transitions in hydrogen under megabar pressures using a first-principles total-energy method is presented. An anisotropic primitive hexagonal phase is found to be particularly stable relative to other monatomic phases for pressures between 4 and 8 megabars. Calculations of the vibrational frequencies show that this phase is unstable with respect to a distortion tripling the unit cell along the c-axis. Results for this distorted hexagonal phase will be presented, including a calculation of its superconducting transition temperature Tc.


Author(s):  
Martin Etter ◽  
Melanie Müller ◽  
Michael Hanfland ◽  
Robert E. Dinnebier

Sequential Rietveld refinements were applied on high-pressure synchrotron powder X-ray diffraction measurements of lanthanum ferrite (LaFeO3) revealing two phase transitions on the room-temperature isotherm up to a pressure of 48 GPa. The first structural phase transition of second order occurs at a pressure of 21.1 GPa, changing the space group fromPbnmtoIbmm. The second transition, involving a isostructural first-order phase transition, occurs at approximately 38 GPa, indicating a high-spin to low-spin transition of the Fe3+ion. Following the behavior of the volume up to the hydrostatic limit of methanol–ethanol it was possible to use inverted equations of state (EoS) to determine a bulk modulus ofB0= 172 GPa and a corresponding pressure derivative ofB′0= 4.3. In addition, the linearized version of the inverted EoS were used to determine the corresponding moduli and pressure derivatives for each lattice direction.


2012 ◽  
Vol 112 (1) ◽  
pp. 014104 ◽  
Author(s):  
J. Frantti ◽  
Y. Fujioka ◽  
J. Zhang ◽  
S. Wang ◽  
S. C. Vogel ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1759 ◽  
Author(s):  
Ines E. Collings ◽  
Michael Hanfland

4-hydroxycyanobenzene (4HCB) is a dipolar molecule formed of an aromatic substituted benzene ring with the CN and OH functional groups at the 1 and 4 positions. In the crystalline state, it forms spiral chains via hydrogen bonding, which pack together through π − π interactions. The direct stacking of benzene rings down the a- and b-axes and its π − π interactions throughout the structure gives rise to its semiconductor properties. Here, high-pressure studies are conducted on 4HCB in order to investigate how the packing and intermolecular interactions, related to its semiconductor properties, are affected. High-pressure single-crystal X-ray diffraction was performed with helium and neon as the pressure-transmitting mediums up to 26 and 15 GPa, respectively. The pressure-dependent behaviour of 4HCB in He was dominated by the insertion of He into the structure after 2.4 GPa, giving rise to two phase transitions, and alterations in the π − π interactions above 4 GPa. 4HCB compressed in Ne displayed two phase transitions associated with changes in the orientation of the 4HCB molecules, giving rise to twice as many face-to-face packing of the benzene rings down the b-axis, which could allow for greater charge mobility. In the He loading, the hydrogen bonding interactions steadily decrease without any large deviations, while in the Ne loading, the change in 4HCB orientation causes an increase in the hydrogen bonding interaction distance. Our study highlights how the molecular packing and π − π interactions evolve with pressure as well as with He insertion.


1997 ◽  
Vol 28 (4-6) ◽  
pp. 273-276
Author(s):  
B. V. Kichatov ◽  
I. V. Boyko

Sign in / Sign up

Export Citation Format

Share Document