Surface plasmon resonance sensing in gaseous media with optical fiber gratings

2018 ◽  
Vol 43 (10) ◽  
pp. 2308 ◽  
Author(s):  
Álvaro González-Vila ◽  
Andreas Ioannou ◽  
Médéric Loyez ◽  
Marc Debliquy ◽  
Driss Lahem ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5262
Author(s):  
Qilin Duan ◽  
Yineng Liu ◽  
Shanshan Chang ◽  
Huanyang Chen ◽  
Jin-hui Chen

Surface plasmonic sensors have been widely used in biology, chemistry, and environment monitoring. These sensors exhibit extraordinary sensitivity based on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) effects, and they have found commercial applications. In this review, we present recent progress in the field of surface plasmonic sensors, mainly in the configurations of planar metastructures and optical-fiber waveguides. In the metastructure platform, the optical sensors based on LSPR, hyperbolic dispersion, Fano resonance, and two-dimensional (2D) materials integration are introduced. The optical-fiber sensors integrated with LSPR/SPR structures and 2D materials are summarized. We also introduce the recent advances in quantum plasmonic sensing beyond the classical shot noise limit. The challenges and opportunities in this field are discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyeong-Min Kim ◽  
Dae Hong Jeong ◽  
Ho-Young Lee ◽  
Jae-Hyoung Park ◽  
Seung-Ki Lee

AbstractA simple optical fiber sensor based on localized surface plasmon resonance was constructed for direct and rapid measurement of thyroglobulin (Tg). Specific tests for Tg in patients that have undergone thyroidectomy are limited because of insufficient sensitivity, complicated procedures, and in some cases, a long time to yield a result. A sensitive, fast, and simple method is necessary to relieve the psychological and physical burden of the patient. Various concentrations of Tg were measured in a microfluidic channel using an optical fiber sensor with gold nanoparticles. The sensor chip has a detection limit of 93.11 fg/mL with no specificity for other antigens. The potential applicability of the Tg sensing system was evaluated using arbitrary samples containing specific concentrations of Tg. Finally, the sensor can be employed to detect Tg in the patient’s serum, with a good correlation when compared with the commercial kit.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1516
Author(s):  
Lian Liu ◽  
Shijie Deng ◽  
Jie Zheng ◽  
Libo Yuan ◽  
Hongchang Deng ◽  
...  

An enhanced plastic optical fiber (POF)-based surface plasmon resonance (SPR) sensor is proposed by employing a double-sided polished structure. The sensor is fabricated by polishing two sides of the POF symmetrically along with the fiber axis, and a layer of Au film is deposited on each side of the polished region. The SPR can be excited on both polished surfaces with Au film coating, and the number of light reflections will be increased by using this structure. The simulation and experimental results show that the proposed sensor has an enhanced SPR effect. The visibility and full width at half maximum (FWHM) of spectrum can be improved for the high measured refractive index (RI). A sensitivity of 4284.8 nm/RIU is obtained for the double-sided POF-based SPR sensor when the measured liquid RI is 1.42. The proposed SPR sensor is easy fabrication and low cost, which can provide a larger measurement range and action area to the measured samples, and it has potential application prospects in the oil industry and biochemical sensing fields.


2015 ◽  
Author(s):  
M. F. S. Santiago ◽  
T. B. Silva ◽  
M. H. Mozzini ◽  
I. B. G. Coutinho ◽  
E. S. Medeiros ◽  
...  

Sensors ◽  
2014 ◽  
Vol 14 (10) ◽  
pp. 18701-18710 ◽  
Author(s):  
J. Ortega-Mendoza ◽  
Alfonso Padilla-Vivanco ◽  
Carina Toxqui-Quitl ◽  
Placido Zaca-Morán ◽  
David Villegas-Hernández ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document