scholarly journals Nonlinear absorption property investigation into MAX phase Ti2AlC at 19 μm

2021 ◽  
Vol 11 (10) ◽  
pp. 3556
Author(s):  
Jinho Lee ◽  
Kyungtaek Lee ◽  
Ju Han Lee
2009 ◽  
Vol 24 (1) ◽  
pp. 34-38 ◽  
Author(s):  
Xiao-Yong ZHANG ◽  
Ming-Ju CHAO ◽  
Er-Jun LIANG ◽  
Fan HU ◽  
Bin YUAN

2020 ◽  
Vol 52 (1) ◽  
pp. 28-43 ◽  
Author(s):  
Wei Xu ◽  
Xiaoyang Fang ◽  
Jiatong Han ◽  
Zhihui Wu ◽  
Jilei Zhang

Metals ◽  
2016 ◽  
Vol 6 (11) ◽  
pp. 265 ◽  
Author(s):  
Muhammad Naveed ◽  
Aleksei Obrosov ◽  
Andrzej Zak ◽  
Wlodzimierz Dudzinski ◽  
Alex Volinsky ◽  
...  

2021 ◽  
Author(s):  
Naveen Gupta ◽  
Sandeep Kumar ◽  
A Gnaneshwaran ◽  
Sanjeev Kumar ◽  
Suman Choudhry

2021 ◽  
Vol 528 ◽  
pp. 167803
Author(s):  
Sergey Lyaschenko ◽  
Olga Maximova ◽  
Dmitriy Shevtsov ◽  
Sergey Varnakov ◽  
Ivan Tarasov ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 1640
Author(s):  
Chunyu Chen ◽  
Jun Wang ◽  
Yachen Gao

This paper aims to study the nonlinear absorption characteristics of palladium nanoparticles (PdNPs) at off-resonant wavelengths. For this purpose, multi-wavelength (500–650 nm) nanosecond Z-scan technique was used. The experimental results indicate that saturated absorption (SA) and the transition from SA to reverse saturated absorption (RSA) can occur, and depends on the excitation wavelength and energy. When the excitation wavelength is constant, with the increase of excitation energy, PdNPs change from SA to RSA. When the excitation energy is constant, with the excitation wavelength approaching surface plasmon resonance (SPR), PdNPs change from SA to RSA. This phenomenon of SA and RSA under multi-wavelength excitation in the off-resonant region provides a supplement for the systematic study of the nonlinear absorption of PdNPs.


2021 ◽  
Vol 10 (3) ◽  
pp. 578-586
Author(s):  
Lin-Kun Shi ◽  
Xiaobing Zhou ◽  
Jian-Qing Dai ◽  
Ke Chen ◽  
Zhengren Huang ◽  
...  

AbstractA nano-laminated Y3Si2C2 ceramic material was successfully synthesized via an in situ reaction between YH2 and SiC using spark plasma sintering technology. A MAX phase-like ternary layered structure of Y3Si2C2 was observed at the atomic-scale by high resolution transmission electron microscopy. The lattice parameters calculated from both X-ray diffraction and selected area electron diffraction patterns are in good agreement with the reported theoretical results. The nano-laminated fracture of kink boundaries, delamination, and slipping were observed at the tip of the Vickers indents. The elastic modulus and Vickers hardness of Y3Si2C2 ceramics (with 5.5 wt% Y2O3) sintered at 1500 °C were 156 and 6.4 GPa, respectively. The corresponding values of thermal and electrical conductivity were 13.7 W·m-1·K-1 and 6.3×105 S·m-1, respectively.


Sign in / Sign up

Export Citation Format

Share Document