Near- and Mid-Infrared Transmission Cells for the Study of Reverse Micelle Phases in Supercritical Fluids

1989 ◽  
Vol 43 (5) ◽  
pp. 812-816 ◽  
Author(s):  
J. P. Blitz ◽  
J. L. Fulton ◽  
R. D. Smith

The design and construction of near- and mid-infrared transmission cells for the study of liquid, gaseous, and fluid systems at elevated pressures and temperatures are described. The cells can be used to pressures as high as 800 bar and temperatures exceeding 100°C. Typical spectra of reverse micelle phases in liquid propane and supercritical xenon through the near- and mid-infrared range are presented. The utility of applying FT-IR spectroscopy, and the transmission cells described here, to study reverse micelle and microemulsion phases in supercritical fluids is clearly demonstrated.

2016 ◽  
Vol 22 (5) ◽  
pp. 325-335 ◽  
Author(s):  
Paulina Zarnowiec ◽  
Andrzej Mizera ◽  
Magdalena Chrapek ◽  
Mariusz Urbaniak ◽  
Wieslaw Kaca

Proteus spp. strains are some of the most important pathogens associated with complicated urinary tract infections and bacteremia affecting patients with immunodeficiency and long-term urinary catheterization. For epidemiological purposes, various molecular typing methods have been developed for this pathogen. However, these methods are labor intensive and time consuming. We evaluated a new method of differentiation between strains. A collection of Proteus spp. strains was analyzed by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy in the mid-infrared region. ATR FT-IR spectroscopy used in conjunction with a diamond ATR accessory directly produced the biochemical profile of the surface chemistry of bacteria. We conclude that a combination of ATR FT-IR spectroscopy and mathematical modeling provides a fast and reliable alternative for discrimination between Proteus isolates, contributing to epidemiological research.


Author(s):  
Maciej Strzempek ◽  
Karolina A. Tarach ◽  
Kinga Góra-Marek ◽  
Fernando Rey ◽  
Miguel Palomino ◽  
...  

Abstract In this article the results of the statistical MC modelling corroborated by the FT-IR spectroscopy and gravimetric adsorption studies of the low aliphatic hydrocarbons in ZSM-5 (Si/Al =28 or...


2021 ◽  
Vol 22 (4) ◽  
pp. 2191
Author(s):  
Jing Huang ◽  
Nairveen Ali ◽  
Elsie Quansah ◽  
Shuxia Guo ◽  
Michel Noutsias ◽  
...  

In recent decades, vibrational spectroscopic methods such as Raman and FT-IR spectroscopy are widely applied to investigate plasma and serum samples. These methods are combined with drop coating deposition techniques to pre-concentrate the biomolecules in the dried droplet to improve the detected vibrational signal. However, most often encountered challenge is the inhomogeneous redistribution of biomolecules due to the coffee-ring effect. In this study, the variation in biomolecule distribution within the dried-sample droplet has been investigated using Raman and FT-IR spectroscopy and fluorescence lifetime imaging method. The plasma-sample from healthy donors were investigated to show the spectral differences between the inner and outer-ring region of the dried-sample droplet. Further, the preferred location of deposition of the most abundant protein albumin in the blood during the drying process of the plasma has been illustrated by using deuterated albumin. Subsequently, two patients with different cardiac-related diseases were investigated exemplarily to illustrate the variation in the pattern of plasma and serum biomolecule distribution during the drying process and its impact on patient-stratification. The study shows that a uniform sampling position of the droplet, both at the inner and the outer ring, is necessary for thorough clinical characterization of the patient’s plasma and serum sample using vibrational spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document