scholarly journals Endocrine Cell Clustering During Human Pancreas Development

2009 ◽  
Vol 57 (9) ◽  
pp. 811-824 ◽  
Author(s):  
Jongmin Jeon ◽  
Mayrin Correa-Medina ◽  
Camillo Ricordi ◽  
Helena Edlund ◽  
Juan A. Diez

The development of efficient, reproducible protocols for directed in vitro differentiation of human embryonic stem (hES) cells into insulin-producing β cells will benefit greatly from increased knowledge regarding the spatiotemporal expression profile of key instructive factors involved in human endocrine cell generation. Human fetal pancreases 7 to 21 weeks of gestational age, were collected following consent immediately after pregnancy termination and processed for immunostaining, in situ hybridization, and real-time RT-PCR expression analyses. Islet-like structures appear from approximately week 12 and, unlike the mixed architecture observed in adult islets, fetal islets are initially formed predominantly by aggregated insulin- or glucagon-expressing cells. The period studied (7–22 weeks) coincides with a decrease in the proliferation and an increase in the differentiation of the progenitor cells, the initiation of NGN3 expression, and the appearance of differentiated endocrine cells. The present study provides a detailed characterization of islet formation and expression profiles of key intrinsic and extrinsic factors during human pancreas development. This information is beneficial for the development of efficient protocols that will allow guided in vitro differentiation of hES cells into insulin-producing cells.

2016 ◽  
Vol 25 (8) ◽  
pp. 648-659 ◽  
Author(s):  
William D'Angelo ◽  
Dhiraj Acharya ◽  
Ruoxing Wang ◽  
Jundi Wang ◽  
Chandan Gurung ◽  
...  

2009 ◽  
Vol 380 (2) ◽  
pp. 230-235 ◽  
Author(s):  
Balusamy Jagatha ◽  
Mundackal S. Divya ◽  
Rajendran Sanalkumar ◽  
Chandrasekharan L. Indulekha ◽  
Sasidharan Vidyanand ◽  
...  

Diabetologia ◽  
2020 ◽  
Vol 63 (10) ◽  
pp. 1974-1980
Author(s):  
Rachel E. Jennings ◽  
Raphael Scharfmann ◽  
Willem Staels

Abstract Improving our understanding of mammalian pancreas development is crucial for the development of more effective cellular therapies for diabetes. Most of what we know about mammalian pancreas development stems from mouse genetics. We have learnt that a unique set of transcription factors controls endocrine and exocrine cell differentiation. Transgenic mouse models have been instrumental in studying the function of these transcription factors. Mouse and human pancreas development are very similar in many respects, but the devil is in the detail. To unravel human pancreas development in greater detail, in vitro cellular models (including directed differentiation of stem cells, human beta cell lines and human pancreatic organoids) are used; however, in vivo validation of these results is still needed. The current best ‘model’ for studying human pancreas development are individuals with monogenic forms of diabetes. In this review, we discuss mammalian pancreas development, highlight some discrepancies between mouse and human, and discuss selected transcription factors that, when mutated, cause permanent neonatal diabetes.


Sign in / Sign up

Export Citation Format

Share Document