scholarly journals Correction: Mycobacterium tuberculosis Universal Stress Protein Rv2623 Regulates Bacillary Growth by ATP-Binding: Requirement for Establishing Chronic Persistent Infection

Author(s):  
Joshua E. Drumm ◽  
Kaixia Mi ◽  
Patrick Bilder ◽  
Meihao Sun ◽  
Jihyeon Lim ◽  
...  
2006 ◽  
Vol 188 (18) ◽  
pp. 6529-6538 ◽  
Author(s):  
Nelli Boes ◽  
Kerstin Schreiber ◽  
Elisabeth Härtig ◽  
Lothar Jaensch ◽  
Max Schobert

ABSTRACT During infection of the cystic fibrosis (CF) lung, Pseudomonas aeruginosa microcolonies are embedded in the anaerobic CF mucus. This anaerobic environment seems to contribute to the formation of more robust P. aeruginosa biofilms and to an increased antibiotic tolerance and therefore promotes persistent infection. This study characterizes the P. aeruginosa protein PA4352, which is important for survival under anaerobic energy stress conditions. PA4352 belongs to the universal stress protein (Usp) superfamily and harbors two Usp domains in tandem. In Escherichia coli, Usp-type stress proteins are involved in survival during aerobic growth arrest and under various other stresses. A P. aeruginosa PA4352 knockout mutant was tested for survival under several stress conditions. We found a decrease in viability of this mutant compared to the P. aeruginosa wild type during anaerobic energy starvation caused by the missing electron acceptors oxygen and nitrate. Consistent with this phenotype under anaerobic conditions, the PA4352 knockout mutant was also highly sensitive to carbonyl cyanide m-chlorophenylhydrazone, the chemical uncoupler of the electron transport chain. Primer extension experiments identified two promoters upstream of the PA4352 gene. One promoter is activated in response to oxygen limitation by the oxygen-sensing regulatory protein Anr. The center of a putative Anr binding site was identified 41.5 bp upstream of the transcriptional start site. The second promoter is active only in the stationary phase, however, independently of RpoS, RelA, or quorum sensing. This is the second P. aeruginosa Usp-type stress protein that we have identified as important for survival under anaerobic conditions, which resembles the environment during persistent infection.


2021 ◽  
Vol 9 (8) ◽  
pp. 1780
Author(s):  
Raphael D. Isokpehi ◽  
Dominique S. McInnis ◽  
Antoinette M. Destefano ◽  
Gabrielle S. Johnson ◽  
Akimio D. Walker ◽  
...  

The presence of methylmercury in aquatic environments and marine food sources is of global concern. The chemical reaction for the addition of a methyl group to inorganic mercury occurs in diverse bacterial taxonomic groups including the Gram-negative, sulfate-reducing Desulfovibrionaceae family that inhabit extreme aquatic environments. The availability of whole-genome sequence datasets for members of the Desulfovibrionaceae presents opportunities to understand the microbial mechanisms that contribute to methylmercury production in extreme aquatic environments. We have applied bioinformatics resources and developed visual analytics resources to categorize a collection of 719 putative universal stress protein (USP) sequences predicted from 93 genomes of Desulfovibrionaceae. We have focused our bioinformatics investigations on protein sequence analytics by developing interactive visualizations to categorize Desulfovibrionaceae universal stress proteins by protein domain composition and functionally important amino acids. We identified 651 Desulfovibrionaceae universal stress protein sequences, of which 488 sequences had only one USP domain and 163 had two USP domains. The 488 single USP domain sequences were further categorized into 340 sequences with ATP-binding motif and 148 sequences without ATP-binding motif. The 163 double USP domain sequences were categorized into (1) both USP domains with ATP-binding motif (3 sequences); (2) both USP domains without ATP-binding motif (138 sequences); and (3) one USP domain with ATP-binding motif (21 sequences). We developed visual analytics resources to facilitate the investigation of these categories of datasets in the presence or absence of the mercury-methylating gene pair (hgcAB). Future research could utilize these functional categories to investigate the participation of universal stress proteins in the bacterial cellular uptake of inorganic mercury and methylmercury production, especially in anaerobic aquatic environments.


Tuberculosis ◽  
2010 ◽  
Vol 90 (4) ◽  
pp. 236-244 ◽  
Author(s):  
S.M. Hingley-Wilson ◽  
K.E.A. Lougheed ◽  
K. Ferguson ◽  
S. Leiva ◽  
H.D. Williams

Author(s):  
Supriya P. Swain ◽  
Subhi Gupta ◽  
Nidhi Das ◽  
Tanos Celmar Costa Franca ◽  
Arlan da Silva Goncalves ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document