scholarly journals Correction: Rho Kinases Regulate the Renewal and Neural Differentiation of Embryonic Stem Cells in a Cell Plating Density–Dependent Manner

Author(s):  
Tzu-Ching Chang ◽  
Yen-Chung Chen ◽  
Ming-Hua Yang ◽  
Chien-Hung Chen ◽  
En-Wei Hsing ◽  
...  
PLoS ONE ◽  
2010 ◽  
Vol 5 (2) ◽  
pp. e9187 ◽  
Author(s):  
Tzu-Ching Chang ◽  
Yen-Chung Chen ◽  
Ming-Hua Yang ◽  
Chien-Hung Chen ◽  
En-Wei Hsing ◽  
...  

2021 ◽  
Author(s):  
Sinjini Bhattacharyya ◽  
Ridim D Mote ◽  
Jacob Freimer ◽  
Surya Bansi Singh ◽  
Sandhya Arumugam ◽  
...  

E-CADHERIN is abundantly expressed in embryonic stem cells (ESCs) and plays an important role in the maintenance of cell-cell adhesions. However, the exact function of this molecule beyond cell adhesion, in the context of cell fate decisions is largely unknown. Using mouse ESCs (mESCs), we demonstrate that E-CADHERIN and β-CATENIN interact at the membrane and continue to do so upon internalization within the cell. Knockout of the gene encoding E-CADHERIN, Cdh1, in mESCs resulted in a failure to form tight colonies, accompanied by altered expression of differentiation markers, and retention of pluripotency factor expression during differentiation. Interestingly, Cdh1-/- mESCs showed a dramatic reduction in β-CATENIN levels. Transcriptional profiling of Cdh1-/- mESCs displayed a significant alteration in the expression of a subset of β-CATENIN targets, in a cell-state dependent manner. While treatment with a pharmacological inhibitor against GSK3β could rescue levels of β-CATENIN in Cdh1-/- mESCs, expression of downstream targets were altered in a context-dependent manner, indicating an additional layer of regulation within this subset. Together, our results reveal the existence of a cell-state-dependent regulation of β-CATENIN and its transcriptional targets in an E-CADHERIN dependent manner. Our findings hint at hitherto unknown roles played by E-CADHERIN in regulating the activity of β-CATENIN in ESCs.


2019 ◽  
Vol 508 (3) ◽  
pp. 907-913 ◽  
Author(s):  
SoJung An ◽  
Ui-Hyun Park ◽  
Seungtae Moon ◽  
Myengmo Kang ◽  
Hyesook Youn ◽  
...  

Author(s):  
Sophia Karouzaki ◽  
Charoula Peta ◽  
Emmanouella Tsirimonaki ◽  
George Leondaritis ◽  
Kostas Vougas ◽  
...  

Embryonic stem cells, ESCs, retain the capacity to self-renew, yet, the protein machinery essential in maintaining this undifferentiated status remains largely undefined. Signalling interactions are initiated and enhanced at the plasma membrane lipid rafts, within constrains and regulation applied by the actin and tubulin cytoskeleton systems. First, we undertook a comprehensive approach using twodimensional gel electrophoresis and mass spectrometry analysis combined with Western blotting and immunofluorescence analyses at the single cell level to compile the proteome profile of detergentfree preparations of lipid rafts of E14 mouse embryonic stem cells. In comparison with the proteomic profiles of other membrane fractions, recovery of actin and tubulin network proteins, including folding chaperones, was impressively high. At equally high frequency we detected annexins, pleiotropic proteins that may bind membrane lipids and actin filaments to regulate important membrane processes, and we validated their expression in lipid rafts. Next, we tested whether lipid raft integrity is required for completion of mitogenic signalling pathways. Disruption of the rafts with the cholesterol sequestering methyl-β-cyclodextrin (MCD) greatly downregulated the mitotic index of ESCs, in a dose- and time of exposure-dependent manner. Moreover, MCD greatly reduced the mitogenic actions of prolactin, a hormone known to stimulate proliferation in a great variety of stem and progenitor cells. Taken together, our data postulate that lipid rafts in ESCs are in close association with the actin and tubulin cytoskeletons to support signal compartmentalization, especially for signalling pathways pertinent to symmetric divisions for self-renewal.


2021 ◽  
Author(s):  
Majid Mehravar ◽  
Yogesh Kumar ◽  
Moshe Olshansky ◽  
Dhiru Bansal ◽  
Craig Dent ◽  
...  

N6-methyladenosine (m6A) is the most predominant internal mRNA modification in eukaryotes, recognised by its reader proteins (so-called m6A-readers) for regulating subsequent mRNA fates, such as splicing, export, localisation, decay, stability, and translation to control several biological processes. Although a few m6A-readers have been identified, yet the list is incomplete. Here, we identify a new m6A-reader protein, Moloney leukaemia virus 10 homologue (MOV10), in mouse embryonic stem cells (mESCs). MOV10 recognises m6A-containing mRNAs with a conserved GGm6ACU motif. Mechanistic studies uncover that MOV10 facilitates mRNA decay of its bound m6A- containing mRNAs in an m6A-dependent manner within the cytoplasmic processing bodies (P-bodies). Furthermore, MOV10 decays the Gsk-3beta mRNA through m6A that stabilises the BETA-CATENIN expression of a WNT/BETA-CATENIN signalling pathway to regulate downstream NANOG expression for maintaining the mESC state. Thus, our findings reveal how a newly identified m6A-reader, MOV10 mediates mRNA decay via m6A that impact embryonic stem cell biology.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Mingze Yao ◽  
Xueke Zhou ◽  
Jiajian Zhou ◽  
Shixin Gong ◽  
Gongcheng Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document