scholarly journals A unified mechanism for the control of Drosophila wing growth by the morphogens Decapentaplegic and Wingless

PLoS Biology ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. e3001111
Author(s):  
Myriam Zecca ◽  
Gary Struhl

Development of the Drosophila wing—a paradigm of organ development—is governed by 2 morphogens, Decapentaplegic (Dpp, a BMP) and Wingless (Wg, a Wnt). Both proteins are produced by defined subpopulations of cells and spread outwards, forming gradients that control gene expression and cell pattern as a function of concentration. They also control growth, but how is unknown. Most studies have focused on Dpp and yielded disparate models in which cells throughout the wing grow at similar rates in response to the grade or temporal change in Dpp concentration or to the different amounts of Dpp “equalized” by molecular or mechanical feedbacks. In contrast, a model for Wg posits that growth is governed by a progressive expansion in morphogen range, via a mechanism in which a minimum threshold of Wg sustains the growth of cells within the wing and recruits surrounding “pre-wing” cells to grow and enter the wing. This mechanism depends on the capacity of Wg to fuel the autoregulation of vestigial (vg)—the selector gene that specifies the wing state—both to sustain vg expression in wing cells and by a feed-forward (FF) circuit of Fat (Ft)/Dachsous (Ds) protocadherin signaling to induce vg expression in neighboring pre-wing cells. Here, we have subjected Dpp to the same experimental tests used to elucidate the Wg model and find that it behaves indistinguishably. Hence, we posit that both morphogens act together, via a common mechanism, to control wing growth as a function of morphogen range.

2020 ◽  
Author(s):  
Shinya Matsuda ◽  
Jonas V. Schaefer ◽  
Yusuke Mii ◽  
Yutaro Hori ◽  
Dimitri Bieli ◽  
...  

SummaryMorphogen gradients provide positional information and control growth in developing tissues, but the underlying mechanisms remain largely unknown due to lack of tools manipulating morphogen gradients. Here, we generate two synthetic protein binder tools manipulating different parameters of Decapentaplegic (Dpp), a morphogen thought to control Drosophila wing disc patterning and growth by dispersal; while HA trap blocks Dpp dispersal, Dpp trap blocks Dpp dispersal and signaling in the source cells. Using these tools, we found that while posterior patterning and growth require Dpp dispersal, anterior patterning and growth largely proceed without Dpp dispersal. We show that dpp transcriptional refinement from an initially uniform to a localized expression and persistent signaling in transient dpp source cells render the anterior compartment robust to blocking Dpp dispersal. Furthermore, neither Dpp dispersal nor signaling is critical for lateral wing growth. These results challenge Dpp dispersal-centric mechanisms, and demonstrate the utility of customized protein binder tools to dissect protein functions.


Author(s):  
C. Boulard ◽  
J. Thévenin ◽  
O. Tranquet ◽  
V. Laporte ◽  
L. Lepiniec ◽  
...  

1974 ◽  
Vol 71 (12) ◽  
pp. 5057-5061 ◽  
Author(s):  
T. Barrett ◽  
D. Maryanka ◽  
P. H. Hamlyn ◽  
H. J. Gould

2021 ◽  
Vol 120 (3) ◽  
pp. 354a
Author(s):  
Anand P. Singh ◽  
Ping Wu ◽  
Eric F. Wieschaus ◽  
Jared E. Toettcher ◽  
Thomas Gregor

2019 ◽  
Vol 132 (5) ◽  
pp. jcs222018 ◽  
Author(s):  
Herve Alégot ◽  
Christopher Markosian ◽  
Cordelia Rauskolb ◽  
Janice Yang ◽  
Elmira Kirichenko ◽  
...  
Keyword(s):  

2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Jun Zhou ◽  
Yasamin Dabiri ◽  
Rodrigo A. Gama-Brambila ◽  
Shahrouz Ghafoory ◽  
Mukaddes Altinbay ◽  
...  

Transforming growth factor β (TGF-β) signaling plays a fundamental role in metazoan development and tissue homeostasis. However, the molecular mechanisms concerning the ubiquitin-related dynamic regulation of TGF-β signaling are not thoroughly understood. Using a combination of proteomics and an siRNA screen, we identify pVHL as an E3 ligase for SMAD3 ubiquitination. We show that pVHL directly interacts with conserved lysine and proline residues in the MH2 domain of SMAD3, triggering degradation. As a result, the level of pVHL expression negatively correlates with the expression and activity of SMAD3 in cells, Drosophila wing, and patient tissues. In Drosophila, loss of pVHL leads to the up-regulation of TGF-β targets visible in a downward wing blade phenotype, which is rescued by inhibition of SMAD activity. Drosophila pVHL expression exhibited ectopic veinlets and reduced wing growth in a similar manner as upon loss of TGF-β/SMAD signaling. Thus, our study demonstrates a conserved role of pVHL in the regulation of TGF-β/SMAD3 signaling in human cells and Drosophila wing development.


Sign in / Sign up

Export Citation Format

Share Document