scholarly journals An Evolutionary-Network Model Reveals Stratified Interactions in the V3 Loop of the HIV-1 Envelope

2005 ◽  
Vol preprint (2007) ◽  
pp. e231
Author(s):  
Art F. Y. Poon ◽  
Fraser Iain Lewis ◽  
Sergei L. Kosakovsky Pond ◽  
Simon D. W. Frost
2007 ◽  
Vol 3 (11) ◽  
pp. e231 ◽  
Author(s):  
Art F. Y Poon ◽  
Fraser I Lewis ◽  
Sergei L. Kosakovsky Pond ◽  
Simon D. W Frost

2020 ◽  
Vol 17 ◽  
Author(s):  
Patrick Appiah-Kubi ◽  
Fisayo Andrew Olotu ◽  
Mahmoud E. S. Soliman

Introduction: Blocking Human Immunodeficiency Virus type 1 (HIV-1) entry via C-C chemokine receptor 5 (CCR5) inhibition has remained an essential strategy in HIV drug discovery. This underlies the development of CCR5 blockers, such as Maraviroc, which, however, elicits undesirable side effects despite its potency. Background: Recent lead optimization efforts led to the discovery of novel 1-heteroaryl-1,3-propanediamine derivatives; Compd-21 and -34, which were ~3 times more potent than Maraviroc, with improved pharmacokinetics. However, atomistic molecular interaction mechanism of how slight structural variance between these inhibitors significantly affects their binding profiles have not been elucidated. Method: This study employed explicit lipid bilayer molecular dynamics (MD) simulations, and advance analyses to explore these inhibitory discrepancies. Results: Findings revealed that the thiophene moiety substitution common to Compd-21 and -34 enhanced their CCR5- inhibitory activities due to complementary high-affinity interactions with Trp862.60, Tyr1083.32, Tyr2516.51, Glu2837.39. These cumulatively accounted for their ΔGbind which were higher than Maraviroc. Binding dynamics further revealed that the compounds mediated direct competitive inhibition at CCR5 by blocking the gp120 V3 loop. Furthermore, constituent tropane and triazole moieties in the compounds commonly engaged in interactions with Glu2837.39 and Trp862.60, respectively. Structural analyses also revealed that both Compd-21 and -34 elicited distinct internal dynamic effect on CCR5 relative to Maraviroc. Conclusion: Structural modifications at the thiophene substituent and the addition of new functional groups to the triazole ring may enhance inhibitor competition with gp120 V3-loop. Findings herein highlighted would contribute to future structure-based design of inhibitors of HIV-1 CCR5 with improved potencies.


Virology ◽  
1996 ◽  
Vol 217 (2) ◽  
pp. 613-617 ◽  
Author(s):  
J.ROBERTO TRUJILLO ◽  
WEI-KUNG WANG ◽  
TUN-HOU LEE ◽  
MAX ESSEX
Keyword(s):  
V3 Loop ◽  

FEBS Letters ◽  
1994 ◽  
Vol 337 (1) ◽  
pp. 4-8 ◽  
Author(s):  
Michael E. Johnson ◽  
Zhaolan Lin ◽  
Kaillathe Padmanabhan ◽  
Alexander Tulinsky ◽  
Michael Kahn

2010 ◽  
Vol 84 (7) ◽  
pp. 3147-3161 ◽  
Author(s):  
Shi-Hua Xiang ◽  
Andrés Finzi ◽  
Beatriz Pacheco ◽  
Kevin Alexander ◽  
Wen Yuan ◽  
...  

ABSTRACT Human immunodeficiency virus (HIV-1) entry into cells is mediated by a trimeric complex consisting of noncovalently associated gp120 (exterior) and gp41 (transmembrane) envelope glycoproteins. The binding of gp120 to receptors on the target cell alters the gp120-gp41 relationship and activates the membrane-fusing capacity of gp41. Interaction of gp120 with the primary receptor, CD4, results in the exposure of the gp120 third variable (V3) loop, which contributes to binding the CCR5 or CXCR4 chemokine receptors. We show here that insertions in the V3 stem or polar substitutions in a conserved hydrophobic patch near the V3 tip result in decreased gp120-gp41 association (in the unliganded state) and decreased chemokine receptor binding (in the CD4-bound state). Subunit association and syncytium-forming ability of the envelope glycoproteins from primary HIV-1 isolates were disrupted more by V3 changes than those of laboratory-adapted HIV-1 envelope glycoproteins. Changes in the gp120 β2, β19, β20, and β21 strands, which evidence suggests are proximal to the V3 loop in unliganded gp120, also resulted in decreased gp120-gp41 association. Thus, a gp120 element composed of the V3 loop and adjacent beta strands contributes to quaternary interactions that stabilize the unliganded trimer. CD4 binding dismantles this element, altering the gp120-gp41 relationship and rendering the hydrophobic patch in the V3 tip available for chemokine receptor binding.


1995 ◽  
Vol 39 (8) ◽  
pp. 607-614 ◽  
Author(s):  
Hiroki Bukawa ◽  
Jun Fukushima ◽  
Kenji Hamajima ◽  
Mari Kimura ◽  
Takashi Tsuji ◽  
...  
Keyword(s):  
V3 Loop ◽  

Virology ◽  
2011 ◽  
Vol 409 (2) ◽  
pp. 360
Author(s):  
Maxim Totrov ◽  
Xunqing Jiang ◽  
Xiang-Peng Kong ◽  
Sandra Cohen ◽  
Chavdar Krachmarov ◽  
...  

2009 ◽  
Vol 83 (21) ◽  
pp. 10941-10950 ◽  
Author(s):  
Avi-Hai Hovav ◽  
Michael Santosuosso ◽  
Maytal Bivas-Benita ◽  
Andre Plair ◽  
Alex Cheng ◽  
...  

ABSTRACT In order to increase the immune breadth of human immunodeficiency virus (HIV) vaccines, strategies such as immunization with several HIV antigens or centralized immunogens have been examined. HIV-1 gp120 protein is a major immunogen of HIV and has been routinely considered for inclusion in both present and future AIDS vaccines. However, recent studies proposed that gp120 interferes with the generation of immune response to codelivered antigens. Here, we investigate whether coimmunization with plasmid-encoded gp120 alters the immune response to other coadministered plasmid encoded antigens such as luciferase or ovalbumin in a mouse model. We found that the presence of gp120 leads to a significant reduction in the expression level of the codelivered antigen in vivo. Antigen presentation by antigen-presenting cells was also reduced and resulted in the induction of weak antigen-specific cellular and humoral immune responses. Importantly, gp120-mediated immune interference was observed after administration of the plasmids at the same or at distinct locations. To characterize the region in gp120 mediating these effects, we used plasmid constructs encoding gp120 that lacks the V1V2 loops (ΔV1V2) or the V3 loop (ΔV3). After immunization, the ΔV1V2, but not the ΔV3 construct, was able to reduce antigen expression, antigen presentation, and subsequently the immunogenicity of the codelivered antigen. The V3 loop dependence of this phenomenon seems to be limited to V3 loops known to interact with the CXCR4 molecule but not with CCR5. Our study presents a novel mechanism by which HIV-1 gp120 interferes with the immune response against coadministered antigen in a polyvalent vaccine preparation.


2015 ◽  
Vol 90 (2) ◽  
pp. 636-649 ◽  
Author(s):  
Susan Zolla-Pazner ◽  
Sandra Sharpe Cohen ◽  
David Boyd ◽  
Xiang-Peng Kong ◽  
Michael Seaman ◽  
...  

ABSTRACTAntibodies (Abs) specific for the V3 loop of the HIV-1 gp120 envelope neutralize most tier 1 and many tier 2 viruses and are present in essentially all HIV-infected individuals as well as immunized humans and animals. Vaccine-induced V3 Abs are associated with reduced HIV infection rates in humans and affect the nature of transmitted viruses in infected vaccinees, despite the fact that V3 is often occluded in the envelope trimer. Here, we link structural and experimental data showing how conformational alterations of the envelope trimer render viruses exceptionally sensitive to V3 Abs. The experiments interrogated the neutralization sensitivity of pseudoviruses with single amino acid mutations in various regions of gp120 that were predicted to alter packing of the V3 loop in the Env trimer. The results indicate that the V3 loop is metastable in the envelope trimer on the virion surface, flickering between states in which V3 is either occluded or available for binding to chemokine receptors (leading to infection) and to V3 Abs (leading to virus neutralization). The spring-loaded V3 in the envelope trimer is easily released by disruption of the stability of the V3 pocket in the unliganded trimer or disruption of favorable V3/pocket interactions. Formation of the V3 pocket requires appropriate positioning of the V1V2 domain, which is, in turn, dependent on the conformation of the bridging sheet and on the stability of the V1V2 B-C strand-connecting loop.IMPORTANCEThe levels of antibodies to the third variable region (V3) of the HIV envelope protein correlate with reduced HIV infection rates. Previous studies showed that V3 is often occluded, as it sits in a pocket of the envelope trimer on the surface of virions; however, the trimer is flexible, allowing occluded portions of the envelope (like V3) to flicker into an exposed position that binds antibodies. Here we provide a systematic interrogation of mechanisms by which single amino acid changes in various regions of gp120 (i) render viruses sensitive to neutralization by V3 antibodies, (ii) result in altered packing of the V3 loop, and (iii) activate an open conformation that exposes V3 to the effects of V3 Abs. Taken together, these and previous studies explain how V3 antibodies can protect against HIV-1 infection and why they should be one of the targets of vaccine-induced antibodies.


2005 ◽  
Vol 350 (4) ◽  
pp. 699-712 ◽  
Author(s):  
Qinxue Hu ◽  
Kelby B. Napier ◽  
John O. Trent ◽  
Zixuan Wang ◽  
Stephen Taylor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document