scholarly journals Uncertainty quantification and sensitivity analysis of COVID-19 exit strategies in an individual-based transmission model

2021 ◽  
Vol 17 (9) ◽  
pp. e1009355
Author(s):  
Federica Gugole ◽  
Luc E. Coffeng ◽  
Wouter Edeling ◽  
Benjamin Sanderse ◽  
Sake J. de Vlas ◽  
...  

Many countries are currently dealing with the COVID-19 epidemic and are searching for an exit strategy such that life in society can return to normal. To support this search, computational models are used to predict the spread of the virus and to assess the efficacy of policy measures before actual implementation. The model output has to be interpreted carefully though, as computational models are subject to uncertainties. These can stem from, e.g., limited knowledge about input parameters values or from the intrinsic stochastic nature of some computational models. They lead to uncertainties in the model predictions, raising the question what distribution of values the model produces for key indicators of the severity of the epidemic. Here we show how to tackle this question using techniques for uncertainty quantification and sensitivity analysis. We assess the uncertainties and sensitivities of four exit strategies implemented in an agent-based transmission model with geographical stratification. The exit strategies are termed Flattening the Curve, Contact Tracing, Intermittent Lockdown and Phased Opening. We consider two key indicators of the ability of exit strategies to avoid catastrophic health care overload: the maximum number of prevalent cases in intensive care (IC), and the total number of IC patient-days in excess of IC bed capacity. Our results show that uncertainties not directly related to the exit strategies are secondary, although they should still be considered in comprehensive analysis intended to inform policy makers. The sensitivity analysis discloses the crucial role of the intervention uptake by the population and of the capability to trace infected individuals. Finally, we explore the existence of a safe operating space. For Intermittent Lockdown we find only a small region in the model parameter space where the key indicators of the model stay within safe bounds, whereas this region is larger for the other exit strategies.

2021 ◽  
Author(s):  
Federica Gugole ◽  
Luc E. Coffeng ◽  
Wouter Edeling ◽  
Benjamin Sanderse ◽  
Sake J. de Vlas ◽  
...  

Many countries are currently dealing with the COVID-19 epidemic and are searching for an exit strategy such that life in society can return to normal. To support this search, computational models are used to predict the spread of the virus and to assess the efficacy of policy measures before actual implementation. The model output has to be interpreted carefully though, as computational models are subject to uncertainties. These can stem from, e.g., limited knowledge about input parameters values or from the intrinsic stochastic nature of some computational models. They lead to uncertainties in the model predictions, raising the question what distribution of values the model produces for key indicators of the severity of the epidemic. Here we show how to tackle this question using techniques for uncertainty quantification and sensitivity analysis. We assess the uncertainties and sensitivities of four exit strategies implemented in an agent-based transmission model with geographical stratification. The exit strategies are termed Flattening the Curve, Contact Tracing, Intermittent Lockdown and Phased Opening. We consider two key indicators of the ability of exit strategies to avoid catastrophic health care overload: the maximum number of prevalent cases in intensive care (IC), and the total number of IC patient-days in excess of IC bed capacity. Our results show that uncertainties not directly related to the exit strategies are secondary, although they should still be considered in comprehensive analysis intended to inform policy makers. The sensitivity analysis discloses the crucial role of the intervention uptake by the population and of the capability to trace infected individuals. Finally, we explore the existence of a safe operating space. For Intermittent Lockdown we find only a small region in the model parameter space where the key indicators of the model stay within safe bounds, whereas this region is larger for the other exit strategies.


2021 ◽  
Vol 11 (12) ◽  
pp. 5367
Author(s):  
Amirarsalan Rajabi ◽  
Alexander V. Mantzaris ◽  
Ece C. Mutlu ◽  
Ozlem O. Garibay

Governments, policy makers, and officials around the globe are working to mitigate the effects of the COVID-19 pandemic by making decisions that strive to save the most lives and impose the least economic costs. Making these decisions require comprehensive understanding of the dynamics by which the disease spreads. In traditional epidemiological models, individuals do not adapt their contact behavior during an epidemic, yet adaptive behavior is well documented (i.e., fear-induced social distancing). In this work we revisit Epstein’s “coupled contagion dynamics of fear and disease” model in order to extend and adapt it to explore fear-driven behavioral adaptations and their impact on efforts to combat the COVID-19 pandemic. The inclusion of contact behavior adaptation endows the resulting model with a rich dynamics that under certain conditions reproduce endogenously multiple waves of infection. We show that the model provides an appropriate test bed for different containment strategies such as: testing with contact tracing and travel restrictions. The results show that while both strategies could result in flattening the epidemic curve and a significant reduction of the maximum number of infected individuals; testing should be applied along with tracing previous contacts of the tested individuals to be effective. The results show how the curve is flattened with testing partnered with contact tracing, and the imposition of travel restrictions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Konstantin D. Pandl ◽  
Scott Thiebes ◽  
Manuel Schmidt-Kraepelin ◽  
Ali Sunyaev

AbstractTo combat the COVID-19 pandemic, many countries around the globe have adopted digital contact tracing apps. Various technologies exist to trace contacts that are potentially prone to different types of tracing errors. Here, we study the impact of different proximity detection ranges on the effectiveness and efficiency of digital contact tracing apps. Furthermore, we study a usage stop effect induced by a false positive quarantine. Our results reveal that policy makers should adjust digital contact tracing apps to the behavioral characteristics of a society. Based on this, the proximity detection range should at least cover the range of a disease spread, and be much wider in certain cases. The widely used Bluetooth Low Energy protocol may not necessarily be the most effective technology for contact tracing.


2021 ◽  
Author(s):  
Michael Prime ◽  
Gavin Jones ◽  
Vicente Romero ◽  
Justin Winokur ◽  
Benjamin Schroeder

Sign in / Sign up

Export Citation Format

Share Document