scholarly journals ISOTOPE: ISOform-guided prediction of epiTOPEs in cancer

2021 ◽  
Vol 17 (9) ◽  
pp. e1009411
Author(s):  
Juan L. Trincado ◽  
Marina Reixachs-Solé ◽  
Judith Pérez-Granado ◽  
Tim Fugmann ◽  
Ferran Sanz ◽  
...  

Immunotherapies provide effective treatments for previously untreatable tumors and identifying tumor-specific epitopes can help elucidate the molecular determinants of therapy response. Here, we describe a pipeline, ISOTOPE (ISOform-guided prediction of epiTOPEs In Cancer), for the comprehensive identification of tumor-specific splicing-derived epitopes. Using RNA sequencing and mass spectrometry for MHC-I associated proteins, ISOTOPE identified neoepitopes from tumor-specific splicing events that are potentially presented by MHC-I complexes. Analysis of multiple samples indicates that splicing alterations may affect the production of self-epitopes and generate more candidate neoepitopes than somatic mutations. Although there was no difference in the number of splicing-derived neoepitopes between responders and non-responders to immune therapy, higher MHC-I binding affinity was associated with a positive response. Our analyses highlight the diversity of the immunogenic impacts of tumor-specific splicing alterations and the importance of studying splicing alterations to fully characterize tumors in the context of immunotherapies. ISOTOPE is available at https://github.com/comprna/ISOTOPE.

2020 ◽  
Author(s):  
Juan L. Trincado ◽  
Marina Reixachs-Sole ◽  
Judith Pérez-Granado ◽  
Tim Fugmann ◽  
Ferran Sanz ◽  
...  

AbstractImmunotherapies provide effective treatments for previously untreatable tumors, but the molecular determinants of response remain to be elucidated. Here, we describe a pipeline, ISOTOPE (ISOform-guided prediction of epiTOPEs In Cancer), for the comprehensive identification of cancer-specific splicing-derived epitopes. Using RNA sequencing and mass spectrometry for MHC-I associated proteins, ISOTOPE identified neoepitopes from cancer-specific splicing event types that are potentially presented by MHC-I complexes. We found that, in general, cancer-specific splicing alterations led more frequently to the depletion of potential self-antigens compared to the generation of neoepitopes. The potential loss of native epitopes was validated using MHC-I associated mass spectrometry from normal cells. Furthermore, analysis of two cohorts of melanoma patients with ISOTOPE identified that splicing-derived neoepitopes with higher MHC-I binding affinity associate with positive response to immune checkpoint blockade therapy. Additionally, we found a more frequent depletion of native epitopes in non-responders, suggesting a new mechanism of immune escape. Our analyses highlight the diversity of the immunogenic impacts of cancer-specific splicing alterations and the importance of studying splicing alterations to fully characterize the determinants of response to immunotherapies. ISOTOPE is available at https://github.com/comprna/ISOTOPE


2021 ◽  
pp. 100108
Author(s):  
Samuel B. Pollock ◽  
Christopher M. Rose ◽  
Martine Darwish ◽  
Romain Bouziat ◽  
Lélia Delamarre ◽  
...  

2001 ◽  
Vol 109 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Jonas Bergquist ◽  
Johan Gobom ◽  
Anders Blomberg ◽  
Peter Roepstorff ◽  
Rolf Ekman

2016 ◽  
Vol 18 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Michael J. Mosko ◽  
Aleksey A. Nakorchevsky ◽  
Eunice Flores ◽  
Heath Metzler ◽  
Mathias Ehrich ◽  
...  

2018 ◽  
Vol 46 (5) ◽  
pp. 1381-1392 ◽  
Author(s):  
Ivar W. Dilweg ◽  
Remus T. Dame

Post-translational modification (PTM) of histones has been investigated in eukaryotes for years, revealing its widespread occurrence and functional importance. Many PTMs affect chromatin folding and gene activity. Only recently the occurrence of such modifications has been recognized in bacteria. However, it is unclear whether PTM of the bacterial counterparts of eukaryotic histones, nucleoid-associated proteins (NAPs), bears a comparable significance. Here, we scrutinize proteome mass spectrometry data for PTMs of the four most abundantly present NAPs in Escherichia coli (H-NS, HU, IHF and FIS). This approach allowed us to identify a total of 101 unique PTMs in the 11 independent proteomic studies covered in this review. Combined with structural and genetic information on these proteins, we describe potential effects of these modifications (perturbed DNA-binding, structural integrity or interaction with other proteins) on their function.


2017 ◽  
Vol 16 (4) ◽  
pp. 1806-1816 ◽  
Author(s):  
J. Patrick Murphy ◽  
Prathyusha Konda ◽  
Daniel J. Kowalewski ◽  
Heiko Schuster ◽  
Derek Clements ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document