scholarly journals Action planning and control under uncertainty emerge through a desirability-driven competition between parallel encoding motor plans

2021 ◽  
Vol 17 (10) ◽  
pp. e1009429
Author(s):  
Vince Enachescu ◽  
Paul Schrater ◽  
Stefan Schaal ◽  
Vassilios Christopoulos

Living in an uncertain world, nearly all of our decisions are made with some degree of uncertainty about the consequences of actions selected. Although a significant progress has been made in understanding how the sensorimotor system incorporates uncertainty into the decision-making process, the preponderance of studies focus on tasks in which selection and action are two separate processes. First people select among alternative options and then initiate an action to implement the choice. However, we often make decisions during ongoing actions in which the value and availability of the alternatives can change with time and previous actions. The current study aims to decipher how the brain deals with uncertainty in decisions that evolve while acting. To address this question, we trained individuals to perform rapid reaching movements towards two potential targets, where the true target location was revealed only after the movement initiation. We found that reaction time and initial approach direction are correlated, where initial movements towards intermediate locations have longer reaction times than movements that aim directly to the target locations. Interestingly, the association between reaction time and approach direction was independent of the target probability. By modeling the task within a recently proposed neurodynamical framework, we showed that action planning and control under uncertainty emerge through a desirability-driven competition between motor plans that are encoded in parallel.

2019 ◽  
Vol 121 (4) ◽  
pp. 1478-1490 ◽  
Author(s):  
Eva-Maria Reuter ◽  
Welber Marinovic ◽  
Timothy N. Welsh ◽  
Timothy J. Carroll

The characteristics of movements are strongly history-dependent. Marinovic et al. (Marinovic W, Poh E, de Rugy A, Carroll TJ. eLife 6: e26713, 2017) showed that past experience influences the execution of limb movements through a combination of temporally stable processes that are strictly use dependent and dynamically evolving and context-dependent processes that reflect prediction of future actions. Here we tested the basis of history-dependent biases for multiple spatiotemporal features of saccadic eye movements under two preparation time conditions (long and short). Twenty people performed saccades to visual targets. To prompt context-specific expectations of most likely target locations, 1 of 12 potential target locations was specified on ~85% of the trials and each remaining target was presented on ~1% trials. In long preparation trials participants were shown the location of the next target 1 s before its presentation onset, whereas in short preparation trials each target was first specified as the cue to move. Saccade reaction times and direction were biased by recent saccade history but according to distinct spatial tuning profiles. Biases were purely expectation related for saccadic reaction times, which increased linearly as the distance from the repeated target location increased when preparation time was short but were similar to all targets when preparation time was long. By contrast, the directions of saccades were biased toward the repeated target in both preparation time conditions, although to a lesser extent when the target location was precued (long preparation). The results suggest that saccade history affects saccade dynamics via both use- and expectation-dependent mechanisms and that movement history has dissociable effects on reaction time and saccadic direction. NEW & NOTEWORTHY The characteristics of our movements are influenced not only by concurrent sensory inputs but also by how we have moved in the past. For limb movements, history effects involve both use-dependent processes due strictly to movement repetition and processes that reflect prediction of future actions. Here we show that saccade history also affects saccade dynamics via use- and expectation-dependent mechanisms but that movement history has dissociable effects on saccade reaction time and direction.


2006 ◽  
Vol 18 (5) ◽  
pp. 859-870 ◽  
Author(s):  
Natalie Sebanz ◽  
Günther Knoblich ◽  
Wolfgang Prinz ◽  
Edmund Wascher

Previous studies have shown that perceiving another's actions activates corresponding representations in an observer's action system. The present study investigated how performing a task with another person affects action planning and control. Reaction times (RTs) and event-related potentials were measured while participants performed a go/no-go task alone and with another person. Three effects of acting together were observed. First, RTs were slowed when individuals had to respond to a stimulus referring to the other's action, suggesting that an action selection conflict occurred. Second, at frontal sites, a stimulus referring to the other's action elicited a similar electrophysiological response as a stimulus referring to one's own action. Finally, on no-go trials, P300 amplitude was significantly larger in a group setting, indicating that an action was suppressed. These findings provide evidence that individuals acting in a social context form shared action representations.


2019 ◽  
Author(s):  
Dirk van Moorselaar ◽  
Heleen A. Slagter

AbstractIt is well known that attention can facilitate performance by top-down biasing processing of task-relevant information in advance. Recent findings from behavioral studies suggest that distractor inhibition is not under similar direct control, but strongly dependent on expectations derived from previous experience. Yet, how expectations about distracting information influence distractor inhibition at the neural level remains unclear. The current study addressed this outstanding question in three experiments in which search displays with repeating distractor or target locations across trials allowed observers to learn which location to selectively suppress or boost. Behavioral findings demonstrated that both distractor and target location learning resulted in more efficient search, as indexed by faster response times. Crucially, benefits of distractor learning were observed without target location foreknowledge, unaffected by the number of possible target locations, and could not be explained by priming alone. To determine how distractor location expectations facilitated performance, we applied a spatial encoding model to EEG data to reconstruct activity in neural populations tuned to the distractor or target location. Target location learning increased neural tuning to the target location in advance, indicative of preparatory biasing. This sensitivity increased after target presentation. By contrast, distractor expectations did not change preparatory spatial tuning. Instead, distractor expectations reduced distractor-specific processing, as reflected in the disappearance of the Pd ERP component, a neural marker of distractor inhibition, and decreased decoding accuracy. These findings suggest that the brain may no longer process expected distractors as distractors, once it has learned they can safely be ignored.Significance statementWe constantly try hard to ignore conspicuous events that distract us from our current goals. Surprisingly, and in contrast to dominant attention theories, ignoring distracting, but irrelevant events does not seem to be as flexible as is focusing our attention on those same aspects. Instead, distractor suppression appears to strongly rely on learned, context-dependent expectations. Here, we investigated how learning about upcoming distractors changes distractor processing and directly contrasted the underlying neural dynamics to target learning. We show that while target learning enhanced anticipatory sensory tuning, distractor learning only modulated reactive suppressive processing. These results suggest that expected distractors may no longer be considered distractors by the brain once it has learned that they can safely be ignored.


2020 ◽  
Vol 73 (9) ◽  
pp. 1360-1367
Author(s):  
Guillaume Thébault ◽  
Roland Pfister ◽  
Arthur-Henri Michalland ◽  
Denis Brouillet

A previous study on ideomotor action control showed that predictable action effects in the agent’s environment influenced how an action is carried out. If participants were required to perform a forceful keypress, they exerted more force when these actions would produce a quiet compared to a loud tone, and this observation suggests that anticipated proprioceptive and auditory action effects are integrated with each other during action planning and control. In light of the typically weak influence of body-related effect found in recent work, we aimed to extend this pattern of results to the intra-modal case of integrating proprioceptive/tactile feedback of a movement and following vibro-tactile effects. Our results suggest that the same weighted integration process as for the cross-modal case applies to the intra-modal case. These observations support the idea of a common mechanism which binds all action-related features in an integrated action representation, irrespective of whether these features relate to exafferent or reafferent signals.


2009 ◽  
Vol 111 (6) ◽  
pp. 1201-1206 ◽  
Author(s):  
Reuben R. Shamir ◽  
Moti Freiman ◽  
Leo Joskowicz ◽  
Sergey Spektor ◽  
Yigal Shoshan

Object Surface-based registration (SBR) with facial surface scans has been proposed as an alternative for the commonly used fiducial-based registration in image-guided neurosurgery. Recent studies comparing the accuracy of SBR and fiducial-based registration have been based on a few targets located on the head surface rather than inside the brain and have yielded contradictory conclusions. Moreover, no visual feedback is provided with either method to inform the surgeon about the estimated target registration error (TRE) at various target locations. The goals in the present study were: 1) to quantify the SBR error in a clinical setup, 2) to estimate the targeting error for many target locations inside the brain, and 3) to create a map of the estimated TRE values superimposed on a patient's head image. Methods The authors randomly selected 12 patients (8 supine and 4 in a lateral position) who underwent neurosurgery with a commercial navigation system. Intraoperatively, scans of the patients' faces were acquired using a fast 3D surface scanner and aligned with their preoperative MR or CT head image. In the laboratory, the SBR accuracy was measured on the facial zone and estimated at various intracranial target locations. Contours related to different TREs were superimposed on the patient's head image and informed the surgeon about the expected anisotropic error distribution. Results The mean surface registration error in the face zone was 0.9 ± 0.35 mm. The mean estimated TREs for targets located 60, 105, and 150 mm from the facial surface were 2.0, 3.2, and 4.5 mm, respectively. There was no difference in the estimated TRE between the lateral and supine positions. The entire registration procedure, including positioning of the scanner, surface data acquisition, and the registration computation usually required < 5 minutes. Conclusions Surface-based registration accuracy is better in the face and frontal zones, and error increases as the target location lies further from the face. Visualization of the anisotropic TRE distribution may help the surgeon to make clinical decisions. The observed and estimated accuracies and the intraoperative registration time show that SBR using the fast surface scanner is practical and feasible in a clinical setup.


2009 ◽  
Vol 37 (3) ◽  
pp. 289-297
Author(s):  
Elizabeth R. Spievak ◽  
Anne M. Murtagh

This study was designed to test and extend prior work that linked personality variables, incentive cues and target detection reaction times. Participants completed a task in which they believed they might gain or lose points, depending upon the target location and their reaction time. After each trial, participants received a randomly generated positive or negative "feedback" message. Those higher in neuroticism showed shorter reaction times on trials following positive feedback. Participants higher in neuroticism and trait anxiety and those with lower scores for self-esteem and venturesomeness were more attentive to point-loss cues. Response times were longer for those who scored higher in trait anxiety and lower in self-esteem. Implications for understanding individual differences in attention and feedback response are discussed.


2021 ◽  
Author(s):  
James Mathew ◽  
Philippe Lefevre ◽  
Frederic Crevecoeur

Savings have been described as the ability of healthy humans to relearn a previously acquired motor skill faster than the first time, which in the context of motor adaptation suggests that the learning rate in the brain could be adjusted when a perturbation is recognized. Alternatively, it has been argued that apparent savings were the consequence of a distinct process that instead of reflecting a change in the learning rate, revealed an explicit re-aiming strategy. Based on recent evidence that feedback adaptation may be central to both planning and control, we hypothesized that this component could genuinely accelerate relearning in human adaptation to force fields during reaching. Consistent with our hypothesis, we observed that upon re-exposure to a previously learned force field, the very first movement performed by healthy volunteers in the relearning context was better adapted to the external disturbance, and this occurred without any anticipation or cognitive strategy because the relearning session was started unexpectedly. We conclude that feedback adaptation is a medium by which the nervous system can genuinely accelerate learning across movements.


2004 ◽  
Vol 27 (01) ◽  
Author(s):  
Myrka Zago ◽  
Francesco Lacquaniti ◽  
Alexandra Battaglia-Mayer ◽  
Roberto Caminiti

1994 ◽  
Vol 1 (4) ◽  
pp. 217-229
Author(s):  
P J Reber ◽  
L R Squire

A fundamental issue about memory and its different forms is whether learning can occur without the development of conscious knowledge of what is learned. Amnesic patients and control subjects performed a serial reaction time task, exhibiting equivalent learning of an imbedded repeating sequence as measured by gradually improving reaction times. In contrast, four tests of declarative (explicit) knowledge indicated that the amnesic patients were unaware of their knowledge. Moreover, after taking the tests of declarative memory, all subjects continued to demonstrate tacit knowledge of the repeating sequence. This dissociation between declarative and nondeclarative knowledge indicates that the parallel brain systems supporting learning and memory differ in their capacity for affording awareness of what is learned.


2018 ◽  
Vol 373 (1743) ◽  
pp. 20170052 ◽  
Author(s):  
Oren Kolodny ◽  
Shimon Edelman

Language plays a pivotal role in the evolution of human culture, yet the evolution of the capacity for language—uniquely within the hominin lineage—remains little understood. Bringing together insights from cognitive psychology, neuroscience, archaeology and behavioural ecology, we hypothesize that this singular occurrence was triggered by exaptation, or ‘hijacking’, of existing cognitive mechanisms related to sequential processing and motor execution. Observed coupling of the communication system with circuits related to complex action planning and control supports this proposition, but the prehistoric ecological contexts in which this coupling may have occurred and its adaptive value remain elusive. Evolutionary reasoning rules out most existing hypotheses regarding the ecological context of language evolution, which focus on ultimate explanations and ignore proximate mechanisms. Coupling of communication and motor systems, although possible in a short period on evolutionary timescales, required a multi-stepped adaptive process, involving multiple genes and gene networks. We suggest that the behavioural context that exerted the selective pressure to drive these sequential adaptations had to be one in which each of the systems undergoing coupling was independently necessary or highly beneficial, as well as frequent and recurring over evolutionary time. One such context could have been the teaching of tool production or tool use. In the present study, we propose the Cognitive Coupling hypothesis, which brings together these insights and outlines a unifying theory for the evolution of the capacity for language. This article is part of the theme issue ‘Bridging cultural gaps: interdisciplinary studies in human cultural evolution’.


Sign in / Sign up

Export Citation Format

Share Document