scholarly journals Potentiation of Nerve Growth Factor-Induced Neurite Outgrowth by Fluvoxamine: Role of Sigma-1 Receptors, IP3 Receptors and Cellular Signaling Pathways

PLoS ONE ◽  
2008 ◽  
Vol 3 (7) ◽  
pp. e2558 ◽  
Author(s):  
Tomoko Nishimura ◽  
Tamaki Ishima ◽  
Masaomi Iyo ◽  
Kenji Hashimoto
1982 ◽  
Vol 91 (2) ◽  
pp. 305-316 ◽  
Author(s):  
Lloyd A. Greene ◽  
David E. Burstein ◽  
Mark M. Black

Endocrinology ◽  
2008 ◽  
Vol 150 (1) ◽  
pp. 200-211 ◽  
Author(s):  
Yohann Mérot ◽  
François Ferrière ◽  
Luc Gailhouste ◽  
Guillaume Huet ◽  
Frédéric Percevault ◽  
...  

A precise description of the mechanisms by which estrogen receptor-α (ERα) exerts its influences on cellular growth and differentiation is still pending. Here, we report that the differentiation of PC12 cells is profoundly affected by ERα. Importantly, depending upon its binding to 17β-estradiol (17βE2), ERα is found to exert different effects on pathways involved in nerve growth factor (NGF) signaling. Indeed, upon its stable expression in PC12 cells, unliganded ERα is able to partially inhibit the neurite outgrowth induced by NGF. This process involves a repression of MAPK and phosphatidylinositol 3-kinase/Akt signaling pathways, which leads to a negative regulation of markers of neuronal differentiation such as VGF and NFLc. This repressive action of unliganded ERα is mediated by its D domain and does not involve its transactivation and DNA-binding domains, thereby suggesting that direct transcriptional activity of ERα is not required. In contrast with this repressive action occurring in the absence of 17βE2, the expression of ERα in PC12 cells allows 17βE2 to potentiate the NGF-induced neurite outgrowth. Importantly, 17βE2 has no impact on NGF-induced activity of MAPK and Akt signaling pathways. The mechanisms engaged by liganded ERα are thus unlikely to rely on an antagonism of the inhibition mediated by the unliganded ERα. Furthermore, 17βE2 enhances NGF-induced response of VGF and NFLc neuronal markers in PC12 clones expressing ERα. This stimulatory effect of 17βE2 requires the transactivation functions of ERα and its D domain, suggesting that an estrogen-responsive element-independent transcriptional mechanism is potentially relevant for the neuritogenic properties of 17βE2 in ERα-expressing PC12 cells. In the absence of its ligand, ERα partially inhibits the nerve growth factor-induced neurite outgrowth of PC12 cells, whereas, once liganded, it enhances differentiation.


1986 ◽  
Vol 102 (3) ◽  
pp. 821-829 ◽  
Author(s):  
C Richter-Landsberg ◽  
B Jastorff

Nerve growth factor (NGF)-mediated neurite outgrowth in rat pheochromocytoma PC12 cells has been described to be synergistically potentiated by the simultaneous addition of dibutyryl cAMP. To elucidate further the role of cAMP in NGF-induced neurite outgrowth we have used the adenylate cyclase activator forskolin, cAMP, and a set of chemically modified cAMP analogues, including the adenosine cyclic 3',5'-phosphorothioates (cAMPS) (Rp)-cAMPS and (Sp)-cAMPS. These diastereomers have differential effects on the activation of cAMP-dependent protein kinases, i.e., (Sp)-cAMPS behaves as a cAMP agonist and (Rp)-cAMPS behaves as a cAMP antagonist. Our data show that the establishment of a neuritic network, as observed from PC12 cells treated with NGF alone, could not be induced by either forskolin, cAMP, or cAMP analogues alone. The presence of NGF in combination with forskolin or cAMP or its agonistic analogues potentiated the initiation of neurite outgrowth from PC12 cells. The (Sp)-cAMPS-induced stimulation of NGF-mediated process formation was successfully blocked by the (Rp)-cAMPS diastereomer. On the other hand, NGF-stimulated neurite outgrowth was not inhibited by the presence of the cAMP antagonist (Rp)-cAMPS. We conclude that the morphological differentiation of PC12 cells stimulated by NGF does not require cAMP as a second messenger. The constant increase of intracellular cAMP, caused by either forskolin or cAMP and the analogues, in combination with NGF, not only rapidly stimulated early neurite outgrowth but also exerted a maintaining effect on the neuronal network established by NGF.


Reproduction ◽  
2020 ◽  
Vol 160 (3) ◽  
pp. 405-415
Author(s):  
Qiaoge Niu ◽  
Maosheng Cao ◽  
Chenfeng Yuan ◽  
Yuwen Huang ◽  
Zijiao Zhao ◽  
...  

Nerve growth factor (NGF) has been proved to play important roles in male reproductive physiology, but the molecular mechanisms of NGF action remain unclear. In this study, the effects of NGF on the growth of newborn bovine testicular Sertoli (NBS) cells and the related signaling pathways were investigated. The NBS cells were treated in vitro with NGF (100 ng/mL) for 18 h. The expression levels of cell proliferation related genes, INHBB, and cytoplasmic specialization related gene were determined using real-time PCR and Western blot. The roles of PI3K/AKT and MAPK/ERK pathways in NGF-induced cell proliferation were investigated. It was found that NGF regulates proliferation and function of NBS cells via its receptor NTRK1 by activating the PI3K/ATK and MAPK/ERK signaling pathways. The study will help to further understand the role of NGF in male reproduction and provide new therapeutic targets for reproductive dysfunctions in male animals.


Sign in / Sign up

Export Citation Format

Share Document