scholarly journals A Reduction in Ribonucleotide Reductase Activity Slows Down the Chromosome Replication Fork but Does Not Change Its Localization

PLoS ONE ◽  
2009 ◽  
Vol 4 (10) ◽  
pp. e7617 ◽  
Author(s):  
Ingvild Odsbu ◽  
Morigen ◽  
Kirsten Skarstad
1990 ◽  
Vol 10 (11) ◽  
pp. 5688-5699
Author(s):  
B E Wojcik ◽  
J J Dermody ◽  
H L Ozer ◽  
B Mun ◽  
C K Mathews

JB3-B is a Chinese hamster ovary cell mutant previously shown to be temperature sensitive for DNA replication (J. J. Dermody, B. E. Wojcik, H. Du, and H. L. Ozer, Mol. Cell. Biol. 6:4594-4601, 1986). It was chosen for detailed study because of its novel property of inhibiting both polyomavirus and adenovirus DNA synthesis in a temperature-dependent manner. Pulse-labeling studies demonstrated a defect in the rate of adenovirus DNA synthesis. Measurement of deoxyribonucleoside triphosphate (dNTP) pools as a function of time after shift of uninfected cultures from 33 to 39 degrees C revealed that all four dNTP pools declined at similar rates in extracts prepared either from whole cells or from rapidly isolated nuclei. Ribonucleoside triphosphate pools were unaffected by a temperature shift, ruling out the possibility that the mutation affects nucleoside diphosphokinase. However, ribonucleotide reductase activity, as measured in extracts, declined after cell cultures underwent a temperature shift, in parallel with the decline in dNTP pool sizes. Moreover, the activity of cell extracts was thermolabile in vitro, consistent with the model that the JB3-B mutation affects the structural gene for one of the ribonucleotide reductase subunits. The kinetics of dNTP pool size changes after temperature shift are quite distinct from those reported after inhibition of ribonucleotide reductase with hydroxyurea. An indirect effect on ribonucleotide reductase activity in JB3-B has not been excluded since human sequences other than those encoding the enzyme subunits can correct the temperature-sensitive growth defect in the mutant.


1983 ◽  
Vol 3 (8) ◽  
pp. 741-748 ◽  
Author(s):  
Jim A. Wright ◽  
Joseph G. Cory

Two components of mammalian ribonucleotide reductase have been separated by blue dextran-Sepharose chromatography from a hydroxyurea-resistant cell line, NcR-30A2, and its parental wild type. Analysis of reductase activity in these cells and the enzyme components reveals that there are three alterations involving ribonucleotide reductase activity in NcR-30A2 cells. There is an elevation in the effector-binding (EB) component, an elevation in the non-heine-ironcontaining (NHI) component, and an alteration in the NHI component that renders the enzyme less sensitive to inhibition by hydroxyurea. These findings easily account for the resistance of NcR-30A2 cells to the antitumor agent hydroxyurea, and to other drugs with a similar mode of action.


1985 ◽  
Vol 5 (12) ◽  
pp. 3443-3450
Author(s):  
J M Leeds ◽  
M B Slabaugh ◽  
C K Mathews

Nuclear and whole-cell deoxynucleoside triphosphate (dNTP) pools were measured in HeLa cells at different densities and throughout the cell cycle of synchronized CHO cells. Nuclei were prepared by brief detergent (Nonidet P-40) treatment of subconfluent monolayers, a procedure that solubilizes plasma membranes but leaves nuclei intact and attached to the plastic substratum. Electron microscopic examination of monolayers treated with Nonidet P-40 revealed protruding nuclei surrounded by cytoskeletal remnants. Control experiments showed that nuclear dNTP pool sizes were stable during the time required for isolation, suggesting that redistribution of nucleotides during the isolation procedure was minimal. Examination of HeLa whole-cell and nuclear dNTP levels revealed that the nuclear proportion of each dNTP was distinct and remained constant as cell density increased. In synchronized CHO cells, all four dNTP whole-cell pools increased during S phase, with the dCTP pool size increasing most dramatically. The nuclear dCTP pool did not increase as much as the whole-cell dCTP pool during S phase, lowering the relative nuclear dCTP pool. Although the whole-cell dNTP pools decreased after 30 h of isoleucine deprivation, nuclear pools did not decrease proportionately. In summary, nuclear dNTP pools in synchronized CHO cells maintained a relatively constant concentration throughout the cell cycle in the face of larger fluctuations in whole-cell dNTP pools. Ribonucleotide reductase activity was measured in CHO cells throughout the cell cycle, and although there was a 10-fold increase in whole-cell activity during S phase, we detected no reductase in nuclear preparations at any point in the cell cycle.


Sign in / Sign up

Export Citation Format

Share Document