scholarly journals Maltose-Binding Protein Enhances Secretion of Recombinant Human Granzyme B Accompanied by In Vivo Processing of a Precursor MBP Fusion Protein

PLoS ONE ◽  
2010 ◽  
Vol 5 (12) ◽  
pp. e14404 ◽  
Author(s):  
Benjamin Dälken ◽  
Robert A. Jabulowsky ◽  
Pranav Oberoi ◽  
Itai Benhar ◽  
Winfried S. Wels
1998 ◽  
Vol 85 (1) ◽  
pp. 69-73 ◽  
Author(s):  
Yoshiyuki Ishii ◽  
Kaoru Murakami ◽  
Hiroaki I.-Ogawa ◽  
Akihiko Kondo ◽  
Yasuhiko Kato

Reproduction ◽  
2002 ◽  
pp. 307-313 ◽  
Author(s):  
C Gaudreault ◽  
L Montfort ◽  
R Sullivan

Despite the various contraceptive methods available, an effective and inexpensive method remains to be established. Immunocontraception may help to achieve this goal. P26h has been proposed as a candidate for the development of a male contraceptive vaccine. P26h, a hamster sperm protein, interacts with the zona pellucida. Furthermore, in vivo fertilization can be blocked completely by active immunization of male hamsters against P26h. Maltose binding protein (MBP)-P26 shares antigenic determinants with the native P26h present on cauda epididymal spermatozoa. The aim of the present study was to reproduce the immunocontraceptive properties of native P26h by immunizing male hamsters against a recombinant P26h fused with a maltose binding protein (MBP). Active immunization of male hamsters with the MBP-P26h showed that specific anti-P26h circulating IgGs could be generated. Mating of immunized male hamsters with superovulated females resulted in a significant decrease, 20-25%, in the fertilization rate. This result is in agreement with results from in vitro sperm-zona pellucida binding assays. Indeed, the anti-recombinant P26h IgGs showed lower inhibitory properties when compared with anti-native P26h IgG. Despite the high anti-P26h IgG titres generated in hamsters, histological studies showed that active immunization has no pathological sequelae to the reproductive tissues. The potential of P26h as a candidate for a contraceptive vaccine is discussed.


PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e39168 ◽  
Author(s):  
Wei Ke ◽  
Abigail H. Laurent ◽  
Morgan D. Armstrong ◽  
Yuchao Chen ◽  
William E. Smith ◽  
...  

2010 ◽  
Vol 192 (9) ◽  
pp. 2294-2304 ◽  
Author(s):  
Eric L. Carter ◽  
Robert P. Hausinger

ABSTRACT Assembly of the Klebsiella aerogenes urease metallocenter requires four accessory proteins, UreD, UreE, UreF, and UreG, to effectively deliver and incorporate two Ni2+ ions into the nascent active site of the urease apoprotein (UreABC). Each accessory protein has been purified and characterized with the exception of UreD due to its insolubility when it is overproduced in recombinant cells. In this study, a translational fusion was made between the maltose binding protein (MBP) and UreD, with the resulting MBP-UreD found to be soluble in Escherichia coli cell extracts and able to complement a ΔureD-urease cluster in this host microorganism. MBP-UreD was purified as a large multimer (>670 kDa) that bound approximately 2.5 Ni2+ ions (Kd of ∼50 μM, where Kd is the dissociation constant) per UreD protomer according to equilibrium dialysis measurements. Zn2+ directly competes with 10-fold higher affinity (∼4 Zn2+ ions per protomer; Kd of 5 μM) for the Ni2+ binding sites. MBP pulldown experiments demonstrated that the UreD domain of MBP-UreD formed in vivo complexes with UreF, UreG, UreF plus UreG, or UreABC when these proteins were overproduced in the same E. coli cells. In addition, a UreABC-(MBP-UreD)-UreFG complex was observed in cells producing all urease components. Comparative in vitro binding experiments with purified proteins demonstrated an approximate 1:1 binding ratio between the UreD domain of MBP-UreD and the UreF domain of the UreEF fusion, only weak or transient interaction between MBP-UreD and UreG, and no binding with UreABC. These studies are the first to describe the properties of purified UreD, and they extend our understanding of its binding partners both in vitro and in the cell.


1993 ◽  
Vol 38 (4) ◽  
pp. 626-630 ◽  
Author(s):  
Osamu Yokosuka ◽  
Yoshimi Ito ◽  
Jun Sakuma ◽  
Fumio Imazeki ◽  
Masao Ohto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document