scholarly journals Autophagy Interplay with Apoptosis and Cell Cycle Regulation in the Growth Inhibiting Effect of Resveratrol in Glioma Cells

PLoS ONE ◽  
2011 ◽  
Vol 6 (6) ◽  
pp. e20849 ◽  
Author(s):  
Eduardo C. Filippi-Chiela ◽  
Emilly Schlee Villodre ◽  
Lauren L. Zamin ◽  
Guido Lenz
2014 ◽  
Vol 21 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Débora Lima Pereira ◽  
Ana Carolina dos Santos Ferreira ◽  
Giselle Pinto de Faria ◽  
Jolie Kiemlian Kwee

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi208-vi208
Author(s):  
Gabriel Valentín Guillama ◽  
Lilia Kucheryavykh

Abstract Patients infected with human immunodeficiency virus type 1 (HIV-1) are more prone to developing cancers, including glioblastomas (GBMs). The median survival for GBM patients with HIV is significantly shorter than for HIV-negative GBM patients, even though they receive the same treatments. This difference indicates that HIV infection is associated with more aggressive tumor behavior and with treatment resistance. Earlier we demonstrated that gp120, a main glycoprotein in the HIV shell, stimulates glycolysis and protein synthesis in glioma cells. The purpose of this study was to evaluate the underlying gp120 dependent signaling mechanism in glioma cell. Mouse glioma cells GL-261 were continuously cultured for 7 days in medium with and without soluble gp120 Bal III (100ng/ml) and collected for Western blot and Cell cycle assays. Western blot analysis presented an increase in phosphorylation of Proline-rich tyrosine kinase (Pyk2(Y402)), p38(YT100/Y182) and p70s6(T421/S424), the key proteins of the Pyk2 pathway, along with the increased levels of Akt(S473) and Glycogen Synthase Kinase 3b (GSK3b (S9)) phosphorylation. Flow cytometry analysis of Cell Cycle revealed an increase of G2/M phase in cells cultured in gp120 Bal III when compared to control cells. Furthermore, GL-261 cells with knock-out of Pyk2 via CRISPR Cas 9 gene editing showed no significant change in cell cycle regulation when cultured with gp120 Bal III.Overall, these results demonstrate that gp120 triggers activation of Pyk2/MAPK and Akt/GSK3b pathways and alter cell cycle regulation in GBM. This research was made possible by NIH grant number 1SC1GM122691.


2019 ◽  
Vol 21 (10) ◽  
pp. 1297-1309 ◽  
Author(s):  
Denise D Correa ◽  
Jaya Satagopan ◽  
Axel Martin ◽  
Erica Braun ◽  
Maria Kryza-Lacombe ◽  
...  

AbstractBackgroundPatients with brain tumors treated with radiotherapy (RT) and chemotherapy (CT) often experience cognitive dysfunction. We reported that single nucleotide polymorphisms (SNPs) in the APOE, COMT, and BDNF genes may influence cognition in brain tumor patients. In this study, we assessed whether genes associated with late-onset Alzheimer’s disease (LOAD), inflammation, cholesterol transport, dopamine and myelin regulation, and DNA repair may influence cognitive outcome in this population.MethodsOne hundred and fifty brain tumor patients treated with RT ± CT or CT alone completed a neurocognitive assessment and provided a blood sample for genotyping. We genotyped genes/SNPs in these pathways: (i) LOAD risk/inflammation/cholesterol transport, (ii) dopamine regulation, (iii) myelin regulation, (iv) DNA repair, (v) blood–brain barrier disruption, (vi) cell cycle regulation, and (vii) response to oxidative stress. White matter (WM) abnormalities were rated on brain MRIs.ResultsMultivariable linear regression analysis with Bayesian shrinkage estimation of SNP effects, adjusting for relevant demographic, disease, and treatment variables, indicated strong associations (posterior association summary [PAS] ≥ 0.95) among tests of attention, executive functions, and memory and 33 SNPs in genes involved in: LOAD/inflammation/cholesterol transport (eg, PDE7A, IL-6), dopamine regulation (eg, DRD1, COMT), myelin repair (eg, TCF4), DNA repair (eg, RAD51), cell cycle regulation (eg, SESN1), and response to oxidative stress (eg, GSTP1). The SNPs were not significantly associated with WM abnormalities.ConclusionThis novel study suggests that polymorphisms in genes involved in aging and inflammation, dopamine, myelin and cell cycle regulation, and DNA repair and response to oxidative stress may be associated with cognitive outcome in patients with brain tumors.


Sign in / Sign up

Export Citation Format

Share Document