scholarly journals Dissecting the Serotonergic Food Signal Stimulating Sensory-Mediated Aversive Behavior in C. elegans

PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e21897 ◽  
Author(s):  
Gareth Harris ◽  
Amanda Korchnak ◽  
Philip Summers ◽  
Vera Hapiak ◽  
Wen Jing Law ◽  
...  
PLoS Genetics ◽  
2016 ◽  
Vol 12 (7) ◽  
pp. e1006153 ◽  
Author(s):  
Michelle C. Krzyzanowski ◽  
Sarah Woldemariam ◽  
Jordan F. Wood ◽  
Aditi H. Chaubey ◽  
Chantal Brueggemann ◽  
...  

2019 ◽  
Author(s):  
Lisa Voelker ◽  
Bishal Upadhyaya ◽  
Denise M. Ferkey ◽  
Sarah Woldemariam ◽  
Noelle D. L’Etoile ◽  
...  

AbstractIn order to respond to changing environments and fluctuations in internal states, animals adjust their behavior through diverse neuromodulatory mechanisms. In this study we show that electrical synapses between the ASH primary quinine-detecting sensory neurons and the neighboring ASK neurons are required for modulating the aversive response to the bitter tastant quinine in C. elegans. Mutant worms that lack the electrical synapse proteins INX-18 and INX-19 become hypersensitive to dilute quinine. Cell-specific rescue experiments indicate that inx-18 operates in ASK while inx-19 is required in both ASK and ASH for proper quinine sensitivity. Imaging analyses find that INX-19 in ASK and ASH localizes to the same regions in the nerve ring, suggesting that both sides of ASK-ASH electrical synapses contain INX-19. While inx-18 and inx-19 mutant animals have a similar behavioral phenotype, several lines of evidence suggest the proteins encoded by these genes play different roles in modulating the aversive quinine response. First, INX-18 and INX-19 localize to different regions of the nerve ring, indicating that they are not present in the same synapses. Second, removing inx-18 disrupts the distribution of INX-19, while removing inx-19 does not alter INX-18 localization. Finally, by using a fluorescent cGMP reporter, we find that INX-18 and INX-19 have distinct roles in establishing cGMP levels in ASK and ASH. Together, these results demonstrate that electrical synapses containing INX-18 and INX-19 facilitate modulation of ASH nociceptive signaling. Our findings support the idea that a network of electrical synapses mediates cGMP exchange between neurons, enabling modulation of sensory responses and behavior.Author SummaryAnimals are constantly adjusting their behavior to respond to changes in the environment or to their internal state. This behavior modulation is achieved by altering the activity of neurons and circuits through a variety of neuroplasticity mechanisms. Chemical synapses are known to impact neuroplasticity in several different ways, but the diversity of mechanisms by which electrical synapses contribute is still being investigated. Electrical synapses are specialized sites of connection between neurons where ions and small signaling molecules can pass directly from one cell to the next. By passing small molecules through electrical synapses, neurons may be able to modify the activity of their neighbors. In this study we identify two genes that contribute to electrical synapses between two sensory neurons in C. elegans. We show that these electrical synapses are crucial for proper modulation of sensory responses, as without them animals are overly responsive to an aversive stimulus. In addition to pinpointing their sites of action, we present evidence that they may be contributing to neuromodulation by facilitating passage of the small molecule cGMP between neurons. Our work provides evidence for a role of electrical synapses in regulating animal behavior.


2020 ◽  
Author(s):  
Gábor Hajdú ◽  
Eszter Gecse ◽  
István Taisz ◽  
István Móra ◽  
Csaba Sőti

AbstractBackgroundProtection of organismal integrity involve physiological stress responses and behavioral defenses. Recent studies in the roundworm Caenorhabditis elegans have shown that pathogen and toxin exposure simultaneously stimulate cellular stress and detoxification responses and aversive behavior. However, whether a coordinate regulation exists between cellular and neurobehavioral defenses remains unclear.ResultsHere we show that exposure of C. elegans to high concentrations of naturally attractive food-derived odors, benzaldehyde and diacetyl, induces toxicity and aversive behavior. Benzaldehyde preconditioning activates systemic cytoprotective stress responses involving DAF-16/FOXO, SKN-1/Nrf and Hsp90 in somatic cells, which confer behavioral tolerance to benzaldehyde and cross-tolerance to the structurally similar methyl-salicylate, but not to the structurally unrelated diacetyl. In contrast, diacetyl preconditioning augments diacetyl avoidance and does not induce apparent molecular defenses. Reinforcement of the experiences using massed training forms relevant associative memories. Memory retrieval by the odor olfactory cues leads to avoidance of food contaminated by diacetyl and context-dependent behavioral decision to avoid benzaldehyde only if there is an alternative, food-indicative odor.ConclusionsOur findings reveal a regulatory link between physiological stress responses and learned behavior which facilitates self-protection in real and anticipated stresses. The potential conservation of this somato-neuronal connection might have relevance in maladaptive avoidant human behaviors.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Gábor Hajdú ◽  
Eszter Gecse ◽  
István Taisz ◽  
István Móra ◽  
Csaba Sőti

Abstract Background Recognition of stress and mobilization of adequate “fight-or-flight” responses is key for survival and health. Previous studies have shown that exposure of Caenorhabditis elegans to pathogens or toxins simultaneously stimulates cellular stress and detoxification responses and aversive behavior. However, whether a coordinated regulation exists between cytoprotective stress responses and behavioral defenses remains unclear. Results Here, we show that exposure of C. elegans to high concentrations of naturally attractive food-derived odors, benzaldehyde and diacetyl, induces toxicity and food avoidance behavior. Benzaldehyde preconditioning activates systemic cytoprotective stress responses involving DAF-16/FOXO, SKN-1/Nrf2, and Hsp90 in non-neuronal cells, which confer both physiological (increased survival) and behavioral tolerance (reduced food avoidance) to benzaldehyde exposure. Benzaldehyde preconditioning also elicits behavioral cross-tolerance to the structurally similar methyl-salicylate, but not to the structurally unrelated diacetyl. In contrast, diacetyl preconditioning augments diacetyl avoidance, weakens physiological diacetyl tolerance, and does not induce apparent molecular defenses. The inter-tissue connection between cellular and behavioral defenses is mediated by JNK-like stress-activated protein kinases and the neuropeptide Y receptor NPR-1. Reinforcement of the stressful experiences using spaced training forms stable stress-specific memories. Memory retrieval by the olfactory cues leads to avoidance of food contaminated by diacetyl and context-dependent behavioral decision to avoid benzaldehyde only if there is an alternative, food-indicative odor. Conclusions Our study reveals a regulatory link between conserved cytoprotective stress responses and behavioral avoidance, which underlies “fight-or-flight” responses and facilitates self-protection in real and anticipated stresses. These findings imply that variations in the efficiency of physiological protection during past episodes of stress might shape current behavioral decisions. Graphical abstract


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


2020 ◽  
Vol 48 (3) ◽  
pp. 1243-1253 ◽  
Author(s):  
Sukriti Kapoor ◽  
Sachin Kotak

Cellular asymmetries are vital for generating cell fate diversity during development and in stem cells. In the newly fertilized Caenorhabditis elegans embryo, centrosomes are responsible for polarity establishment, i.e. anterior–posterior body axis formation. The signal for polarity originates from the centrosomes and is transmitted to the cell cortex, where it disassembles the actomyosin network. This event leads to symmetry breaking and the establishment of distinct domains of evolutionarily conserved PAR proteins. However, the identity of an essential component that localizes to the centrosomes and promotes symmetry breaking was unknown. Recent work has uncovered that the loss of Aurora A kinase (AIR-1 in C. elegans and hereafter referred to as Aurora A) in the one-cell embryo disrupts stereotypical actomyosin-based cortical flows that occur at the time of polarity establishment. This misregulation of actomyosin flow dynamics results in the occurrence of two polarity axes. Notably, the role of Aurora A in ensuring a single polarity axis is independent of its well-established function in centrosome maturation. The mechanism by which Aurora A directs symmetry breaking is likely through direct regulation of Rho-dependent contractility. In this mini-review, we will discuss the unconventional role of Aurora A kinase in polarity establishment in C. elegans embryos and propose a refined model of centrosome-dependent symmetry breaking.


Author(s):  
Takaaki Hirotsu ◽  
Yu Hayashi ◽  
Ryo Iwata ◽  
Hirofumi Kunitomo ◽  
Eriko Kage-Nakadai ◽  
...  

2010 ◽  
Vol 5 (03) ◽  
Author(s):  
M Pfeiffer ◽  
A Schlotterer ◽  
G Kukudov ◽  
T Fleming ◽  
A Bierhaus ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document