scholarly journals Human RNA Polymerase II-Association Factor 1 (hPaf1/PD2) Regulates Histone Methylation and Chromatin Remodeling in Pancreatic Cancer

PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e26926 ◽  
Author(s):  
Parama Dey ◽  
Moorthy P. Ponnusamy ◽  
Shonali Deb ◽  
Surinder K. Batra
2004 ◽  
Vol 24 (18) ◽  
pp. 8227-8235 ◽  
Author(s):  
Vardit Dror ◽  
Fred Winston

ABSTRACT The Swi/Snf chromatin remodeling complex has been previously demonstrated to be required for transcriptional activation and repression of a subset of genes in Saccharomyces cerevisiae. In this work we demonstrate that Swi/Snf is also required for repression of RNA polymerase II-dependent transcription in the ribosomal DNA (rDNA) locus (rDNA silencing). This repression appears to be independent of both Sir2 and Set1, two factors known to be required for rDNA silencing. In contrast to many other rDNA silencing mutants that have elevated levels of rDNA recombination, snf2Δ mutants have a significantly decreased level of rDNA recombination. Additional studies have demonstrated that Swi/Snf is also required for silencing of genes near telomeres while having no detectable effect on silencing of HML or HMR.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Vasily M Studitsky ◽  
Olga Kulaeva ◽  
Daria Gaykalova ◽  
Nikolai Pestov ◽  
Viktor Golovastov ◽  
...  

2014 ◽  
Vol 92 (1) ◽  
pp. 69-75 ◽  
Author(s):  
Roshini N. Wimalarathna ◽  
Po Yun Pan ◽  
Chang-Hui Shen

In yeast, Ace1p-dependent induction of CUP1 is responsible for protecting cells from copper toxicity. Although the mechanism of yeast CUP1 induction has been studied intensively, it is still uncertain which chromatin remodelers are involved in CUP1 transcriptional activation. Here, we show that yeast cells are inviable in the presence of copper when either chromatin remodeler, Ino80p or Snf2p, is not present. This inviability is due to the lack of CUP1 expression in ino80Δ and snf2Δ cells. Subsequently, we observe that both Ino80p and Snf2p are present at the promoter and they are responsible for recruiting chromatin remodeling activity to the CUP1 promoter under induced conditions. These results suggest that they directly participate in CUP1 transcriptional activation. Furthermore, the codependent recruitment of both INO80 and SWI/SNF depends on the presence of the transcriptional activator, Ace1p. We also demonstrate that both remodelers are required to recruit RNA polymerase II and targeted histone acetylation, indicating that remodelers are recruited to the CUP1 promoter before RNA polymerase II and histone acetylases. These observations provide evidence for the mechanism of CUP1 induction. As such, we propose a model that describes novel insight into the order of events in CUP1 activation.


2012 ◽  
Vol 13 (11) ◽  
pp. R106 ◽  
Author(s):  
Mariona Nadal-Ribelles ◽  
Núria Conde ◽  
Oscar Flores ◽  
Juan González-Vallinas ◽  
Eduardo Eyras ◽  
...  

2006 ◽  
Vol 26 (8) ◽  
pp. 3135-3148 ◽  
Author(s):  
Hongfang Qiu ◽  
Cuihua Hu ◽  
Chi-Ming Wong ◽  
Alan G. Hinnebusch

ABSTRACT The Paf1 complex (Paf1C) interacts with RNA polymerase II (Pol II) and promotes histone methylation of transcribed coding sequences, but the mechanism of Paf1C recruitment is unknown. We show that Paf1C is not recruited directly by the activator Gcn4p but is dependent on preinitiation complex assembly and Ser5 carboxy-terminal domain phosphorylation for optimal association with ARG1 coding sequences. Importantly, Spt4p is required for Paf1C occupancy at ARG1 (and other genes) and for Paf1C association with Ser5-phosphorylated Pol II in cell extracts, whereas Spt4p-Pol II association is independent of Paf1C. Since spt4Δ does not reduce levels of Pol II at ARG1, Ser5 phosphorylation, or Paf1C expression, it appears that Spt4p (or its partner in DSIF, Spt5p) provides a platform on Pol II for recruiting Paf1C following Ser5 phosphorylation and promoter clearance. spt4Δ reduces trimethylation of Lys4 on histone H3, demonstrating a new role for yeast DSIF in promoting a Paf1C-dependent function in elongation.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Marie N. Yearling ◽  
Catherine A. Radebaugh ◽  
Laurie A. Stargell

The initial discovery of the occupancy of RNA polymerase II at certain genes prior to their transcriptional activation occurred a quarter century ago in Drosophila. The preloading of these poised complexes in this inactive state is now apparent in many different organisms across the evolutionary spectrum and occurs at a broad and diverse set of genes. In this paper, we discuss the genetic and biochemical efforts in S. cerevisiae to describe the conversion of these poised transcription complexes to the active state for productive elongation. The accumulated evidence demonstrates that a multitude of coactivators and chromatin remodeling complexes are essential for this transition.


2020 ◽  
Vol 159 (5) ◽  
pp. 1898-1915.e6 ◽  
Author(s):  
Saswati Karmakar ◽  
Sanchita Rauth ◽  
Palanisamy Nallasamy ◽  
Naveenkumar Perumal ◽  
Rama Krishna Nimmakayala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document