scholarly journals AMPA Receptor Activation Causes Silencing of AMPA Receptor-Mediated Synaptic Transmission in the Developing Hippocampus

PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e34474 ◽  
Author(s):  
Pontus Wasling ◽  
Joakim Strandberg ◽  
Eric Hanse
2019 ◽  
Author(s):  
Hector Salazar ◽  
Sabrina Mischke ◽  
Andrew J. R. Plested

Ionotropic glutamate receptors (iGluRs) are ligand gated ion channels that mediate excitatory synaptic transmission in the central nervous system (CNS). Desensitization of the AMPA-subtype following glutamate binding appears critical for brain function, and involves rearrangement of the ligand binding domains (LBDs). Recently, several full-length structures of iGluRs in putative desensitized states were published. These structures indicate movements of the LBDs that might be trapped by cysteine crosslinks and metal bridges. We found that cysteine mutants at the interface between subunits A and C, and lateral zinc bridges (between subunits C & D or A & B) can trap freely-desensitizing receptors in a spectrum of states with different stabilities. Consistent with close approach of subunits during desensitization processes, introduction of bulky amino acids at the A-C interface produced a receptor with slow recovery from desensitization. Further, in wild-type GluA2 receptors, we detected population of stable desensitized state with a lifetime around 1 second. Using mutations that progressively stabilise deep desensitize states (E713T & Y768R), we were able to selectively protect receptors from crosslinks at both the diagonal and lateral interfaces. Ultrafast perfusion enabled us to perform chemical modification in less than 10 ms, reporting movements associated to desensitization on this timescale within LBD dimers in resting receptors. These observations suggest small disruptions of quaternary structure are sufficient for fast desensitization, and that substantial rearrangements likely correspond to stable desensitized states that are adopted relatively slowly, on a timescale much longer than physiological receptor activation.Significance statementiGluRs are central components of fast synaptic transmission in the brain. iGluR desensitization occurs as a natural consequence of receptor activation and can reduce the response of an excitatory synapse. AMPA receptor desensitization also appears necessary for proper brain development. Molecular structures of iGluRs in putative desensitized states predict a range of movements during desensitization. In the present study, we performed a series of crosslinking experiments on mutant receptors that we subjected to similar desensitizing conditions over time periods from milliseconds to minutes. These experiments allowed us to count desensitized configurations and rank them according to their stabilities. These data show that large-scale rearrangements occur during long glutamate exposures that are probably not seen in healthy brain tissue, whereas smaller changes in structure probably suffice for desensitization at synapses.


1997 ◽  
Vol 78 (4) ◽  
pp. 1965-1972 ◽  
Author(s):  
Kofi Kessey ◽  
David J. Mogul

Kessey, Kofi and David J. Mogul. NMDA-independent LTP by adenosine A2 receptor-mediated postsynaptic AMPA potentiation in hippocampus. J. Neurophysiol. 78: 1965–1972, 1997. The role of adenosine A2 receptors in normal synaptic transmission and tetanus-induced long-term potentiation (LTP) was tested by stimulation of the Schaffer collateral pathway and recording of the field excitatory postsynaptic potential (EPSP) in the CA1 region of rat transverse hippocampal slices. Activation of adenosine A2 receptors with the A2 agonist N 6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine (DPMA; 20 nM) enhanced synaptic transmission during low-frequency test pulses (0.033 Hz). Paired stimulation before and during DPMA exposure indicated no paired-pulse facilitation as a result of A2 activation, suggesting that enhancement was not a result of presynaptic modulation. DPMA enhanced the early phase α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) component of the EPSP. In contrast, DPMA had no effect on the N-methyl-d-aspartate (NMDA) component isolated using low extracellular Mg2+ and the AMPA receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione (20 μM), indicating that the effects of A2 activation on synaptic transmission were mediated by a postsynaptic enhancement of the AMPA response. Activation of adenosine A2 receptors during a brief tetanus (100 Hz, 1 s) increased the level of LTP by 36% over that seen in response to a tetanus under control conditions. DPMA exposure after prior induction of LTP showed no additional potentiation, indicating that the mechanisms that contribute to both types of increases in synaptic transmission share a common mechanism. A slow onset NMDA-independent LTP could be induced by application of a tetanus during perfusion of DPMA with the NMDA blocker AP5 (50 μM). Blockade of L-type Ca channels with nifedipine (10 μM) had no effect on normal synaptic transmission but reduced NMDA-independent LTP by 32%. Very little NMDA-independent LTP could be induced after prior saturation of NMDA-dependent LTP via multiple tetani spaced 10 min apart, indicating that both forms of LTP are eventually convergent on a common mechanism, presumably the postsynaptic AMPA receptor response. Because extracellular adenosine levels are modulated by cellular activity throughout the brain and because adenosine receptor activation can markedly alter levels of synaptic transmission independent of NMDA receptors, adenosine may play an important and complex role as a modulator of synaptic transmission in the brain.


2021 ◽  
Vol 83 ◽  
pp. 69-76
Author(s):  
Satoko Nakajima ◽  
Nana Saeki ◽  
Haruna Tamano ◽  
Ryusuke Nishio ◽  
Misa Katahira ◽  
...  

1997 ◽  
Vol 78 (1) ◽  
pp. 82-91 ◽  
Author(s):  
Stefan Titz ◽  
Bernhard U. Keller

Titz, Stefan and Bernhard U. Keller. Rapidly deactivating AMPA receptors determine excitatory synaptic transmission to interneurons in the nucleus tractus solitarius from rat. J. Neurophysiol. 78: 82–91, 1997. Excitatory synaptic transmission was investigated in interneurons of the parvocellular nucleus tractus solitarius (pNTS) by performing patch-clamp experiments in thin slice preparations from rat brain stem. Stimulation of single afferent fibers evoked excitatory postsynaptic currents (EPSCs) mediated by glutamate receptors of the dl-α-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA) and N-methyl-d-aspartate types. AMPA-receptor-mediated EPSCs displayed decay time constants of 3.5 ± 1.2 (SD) ms (13 cells), which were slow compared with EPSC decay time constants in neurons of the cerebellum or hippocampus. Slow EPSC decay was not explained by dendritic filtering, because the passive membrane properties of pNTS interneurons provided favorable voltage-clamp conditions. Also, the slowness of EPSC decay did not result from slow deactivation of AMPA receptors (0.7 ± 0.2 ms, 5 cells), which was investigated during rapid application of agonist to outside-out patches. Comparison of AMPA receptor kinetics with EPSC decay time constants suggested that the slow time course of EPSCs resulted from the prolonged presence of glutamate in the synaptic cleft.


2005 ◽  
Vol 94 (6) ◽  
pp. 4131-4144 ◽  
Author(s):  
Ling Chen ◽  
Masahiro Sokabe

The effects of pregnenolone sulfate (PREGS), a putative neurosteroid, on the transmission of perforant path–granule cell synapses were investigated with an optical recording technique in rat hippocampal slices stained with voltage-sensitive dyes. Application of PREGS to the bath solution resulted in an acute augmentation of EPSP in a dose-dependent manner. The PREGS effect was dependent on the extracellular Ca2+ concentration ([Ca2+]o), but independent of NMDA receptor activation. PREGS caused a decrease in paired-pulse facilitation, which implies that PREGS positively modulates presynaptic neurotransmitter releases. Firmer support for this mechanism was that PREGS augmented the synaptically induced glial depolarization (SIGD) that reflects the activity of electrogenic glutamate transporters in glial cells during the uptake of released glutamate. The selective α7nAChR antagonist α-BGT or MLA prevented the SIGD increase by PREGS. Furthermore DMXB, a selective α7nAChR agonist, mimicked the PREGS effect on SIGD and antagonized the effect of PREGS. The presynaptic effect of PREGS was partially attenuated by the L-type Ca2+ channel (VGCC) blocker nifedipine. Based on these findings, we proposed a novel mechanism underlying the facilitated synaptic transmission by PREGS: this neurosteroid sensitizes presynaptic α7nAChR that is followed by an activation of L-type VGCC to increase the presynaptic glutamate release.


Synapse ◽  
2016 ◽  
Vol 70 (5) ◽  
pp. 181-186 ◽  
Author(s):  
Katherine M. Evely ◽  
Randall L. Hudson ◽  
Margarita L. Dubocovich ◽  
Samir Haj-dahmane

1993 ◽  
Vol 69 (2) ◽  
pp. 626-629 ◽  
Author(s):  
J. C. Behrends ◽  
G. ten Bruggencate

1. The effect of cholinergic receptor activation on gamma-aminobutyric acid (GABA)-mediated inhibitory synaptic transmission was investigated in voltage-clamped CA1 pyramidal neurons (HPNs) in the guinea pig hippocampal slice preparation. 2. The cholinergic agonist carbachol (1-10 microM) induced a prominent and sustained increase in the frequency and amplitudes of spontaneous inhibitory postsynaptic currents (IPSCs) in Cl(-)-loaded HPNs. The potentiation of spontaneous IPSCs was not dependent on excitatory synaptic transmission but was blocked by atropine (1 microM). 3. Monosynaptically evoked IPSCs were reversibly depressed by carbachol (10 microM). 4. The frequency of miniature IPSCs recorded in the presence of tetrodotoxin (0.6 or 1.2 microM) was reduced by carbachol (10 or 20 microM) in an atropine-sensitive manner. 5. We conclude that, while cholinergic receptor activation directly excites hippocampal GABAergic interneurons, it has, in addition, a suppressant effect on the synaptic release mechanism at GABAergic terminals. This dual modulatory pattern could explain the suppression of evoked IPSCs despite enhanced spontaneous transmission.


1999 ◽  
Vol 82 (3) ◽  
pp. 1286-1294 ◽  
Author(s):  
Jane M. Sullivan

Cannabinoids, such as marijuana, are known to impair learning and memory perhaps through their actions in the hippocampus where cannabinoid receptors are expressed at high density. Although cannabinoid receptor activation decreases glutamatergic synaptic transmission in cultured hippocampal neurons, the mechanisms of this action are not known. Cannabinoid receptor activation also inhibits calcium channels that support neurotransmitter release in these cells, making modulation of these channels a candidate for cannabinoid-receptor–mediated effects on synaptic transmission. Whole cell patch-clamp recordings of glutamatergic neurons cultured from the CA1 and CA3 regions of the hippocampus were used to identify the mechanisms of the effects of cannabinoids on synaptic transmission. Cannabinoid receptor activation reduced excitatory postsynaptic current (EPSC) size by ∼50% but had no effect on the amplitude of spontaneous miniature EPSCs (mEPSCs). This reduction in EPSC size was accompanied by an increase in paired-pulse facilitation measured in low (1 mM) extracellular calcium and by a decrease in paired-pulse depression measured in normal (2.5 mM) extracellular calcium. Together, these results strongly support the hypothesis that cannabinoid receptor activation decreases EPSC size by reducing release of neurotransmitter presynaptically while having no effect on postsynaptic sensitivity to glutamate. Further experiments were done to identify the molecular mechanisms underlying this cannabinoid-receptor–mediated decrease in neurotransmitter release. Cannabinoid receptor activation had no effect on the size of the presynaptic pool of readily releasable neurotransmitter-filled vesicles, eliminating reduction in pool size as a mechanism for cannabinoid-receptor–mediated effects. After blockade of Q- and N-type calcium channels with ω-agatoxin TK and ω-conotoxin GVIA; however, activation of cannabinoid receptors reduced EPSC size by only 14%. These results indicate that cannabinoid receptor activation reduces the probability that neurotransmitter will be released in response to an action potential via an inhibition of presynaptic Q- and N-type calcium channels. This molecular mechanism most likely contributes to the impairment of learning and memory produced by cannabinoids and may participate in the analgesic, antiemetic, and anticonvulsive effects of these drugs as well.


2012 ◽  
Vol 108 (7) ◽  
pp. 1988-1998 ◽  
Author(s):  
Kohei Koga ◽  
Su-Eon Sim ◽  
Tao Chen ◽  
Long-Jun Wu ◽  
Bong-Kiun Kaang ◽  
...  

Kainate (KA) receptors are expressed widely in the central nervous system and regulate both excitatory and inhibitory synaptic transmission. KA receptors play important roles in fear memory, anxiety, and pain. However, little is known about their function in synaptic transmission in the insular cortex (IC), a critical region for taste, memory, and pain. Using whole cell patch-clamp recordings, we have shown that KA receptors contribute to fast synaptic transmission in neurons in all layers of the IC. In the presence of the GABAA receptor antagonist picrotoxin, the NMDA receptor antagonist AP-5, and the selective AMPA receptor antagonist GYKI 53655, KA receptor-mediated excitatory postsynaptic currents (KA EPSCs) were revealed. We found that KA EPSCs are ∼5–10% of AMPA/KA EPSCs in all layers of the adult mouse IC. Similar results were found in adult rat IC. KA EPSCs had a significantly slower rise time course and decay time constant compared with AMPA receptor-mediated EPSCs. High-frequency repetitive stimulations at 200 Hz significantly facilitated the summation of KA EPSCs. In addition, genetic deletion of GluK1 or GluK2 subunit partially reduced postsynaptic KA EPSCs, and exposure of GluK2 knockout mice to the selective GluK1 antagonist UBP 302 could significantly reduce the KA EPSCs. These data suggest that both GluK1 and GluK2 play functional roles in the IC. Our study may provide the synaptic basis for the physiology and pathology of KA receptors in the IC-related functions.


Sign in / Sign up

Export Citation Format

Share Document