scholarly journals Isoenergetic Feeding of Low Carbohydrate-High Fat Diets Does Not Increase Brown Adipose Tissue Thermogenic Capacity in Rats

PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e38997 ◽  
Author(s):  
Matthias J. Betz ◽  
Maximilian Bielohuby ◽  
Brigitte Mauracher ◽  
William Abplanalp ◽  
Hans-Helge Müller ◽  
...  
Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 136 ◽  
Author(s):  
Mikyoung You ◽  
Rong Fan ◽  
Judy Kim ◽  
Seung-Ho Shin ◽  
Soonkyu Chung

Supplementation with n-3 long-chain (LC) polyunsaturated fatty acids (PUFA) is known to promote thermogenesis via the activation of brown adipose tissue (BAT). Agricultural products that are biofortified with α-linolenic acid (ALA), the precursor of n-3 LC PUFA, have been launched to the market, but their impact on BAT function is unknown. This study aimed to evaluate the effects of ALA-biofortified butter on lipid metabolism and thermogenic functions in the BAT. C57BL/6 mice were fed a high-fat diet containing ALA-biofortified butter (n3Bu, 45% calorie from fat) for ten weeks in comparison with the isocaloric high-fat diets prepared from conventional butter or margarine. The intake of n3Bu significantly reduced the whitening of BAT and increased the thermogenesis in response to acute-cold treatment. Also, n3Bu supplementation is linked with the remodeling of BAT by promoting bioconversion into n-3 LC PUFA, FA elongation and desaturation, and mitochondrial biogenesis. Taken together, our results support that ALA-biofortified butter is a novel source of n-3 PUFA, which potentiates the BAT thermogenic function.


1987 ◽  
Vol 253 (2) ◽  
pp. E149-E157
Author(s):  
H. K. Kim ◽  
D. R. Romsos

Adrenalectomy prevents development of obesity in ob/ob mice fed high-carbohydrate stock diets partly by stimulating the low thermogenic capacity of their brown adipose tissue (BAT). Adrenalectomy, however, fails to prevent development of obesity in ob/ob mice fed a high-fat diet. Effects of adrenalectomy on BAT metabolism in ob/ob mice fed a high-fat diet were thus examined. ob/ob mice fed the high-fat diet developed gross obesity despite normal BAT metabolism, as assessed by rates of norepinephrine turnover in BAT, GDP binding to BAT mitochondria, and GDP-inhibitable, chloride-induced mitochondrial swelling. Adrenalectomy failed to arrest the development of obesity or to influence BAT metabolism in ob/ob mice fed the high-fat diet. Development of obesity in ob/ob mice fed a high-fat diet is not associated with low thermogenic capacity of BAT or with adrenal secretions, as it is in ob/ob mice fed high-carbohydrate stock diets.


1961 ◽  
Vol 201 (1) ◽  
pp. 23-26 ◽  
Author(s):  
Serene Lochaya ◽  
Nicole Leboeuf ◽  
Jean Mayer ◽  
Bernard Leboeuf

Adipose tissue metabolism in vitro was studied, after substitution for several weeks of synthetic low-carbohydrate, high-fat (saturated or unsaturated) diets for the standard chow diet, in obese hyperglycemic mice and in their nonobese littermates. In tissue from nonobese mice fed the high-fat diets, glucose metabolism to CO2 and to fatty acids was diminished in the absence of added hormone, while glucose carbon incorporation to glyceride-glycerol was increased. Under insulin (0.1 unit/ml) stimulation, total glucose uptake was relatively decreased by the diets, as was glucose metabolism to CO2, to fatty acids, and to glycogen; however, glucose carbon incorporation to glyceride-glycerol was unaltered. Under epinephrine stimulation, the sum of glucose carbon recovery was less after high-fat feeding. No effect of high-fat feeding was detected on base-line rates of free fatty acid release nor on the effects of insulin or epinephrine on this process. No differences were found between the effects of saturated- or unsaturated-fat diets on any parameters. The metabolism of adipose tissue from obese mice was slightly, if at all, affected by high-fat feeding. These results are discussed in reference to the normal adaptation to low-carbohydrate, high-fat diets and to the metabolic abnormalities present in obese hyperglycemic mice.


2000 ◽  
Vol 84 (2) ◽  
pp. 175-184 ◽  
Author(s):  
Yoko Takahashi ◽  
Takashi Ide

We examined the effect of dietary fats rich in n-3 polyunsaturated fatty acids (PUFA) on mRNA levels in white and brown adipose tissues in rats. Four groups of rats were fed on a low-fat diet (20 g safflower oil/kg) or a high-fat diet (200 g/kg) containing safflower oil, which is rich in n-6 PUFA (linoleic acid), or perilla (α-linolenic acid) or fish oil (eicosapentaenoic and docosahexaenoic acids), both of which are rich in n-3 PUFA, for 21 d. Energy intake was higher in rats fed on a high-safflower-oil diet than in those fed on low-fat or high-fish-oil diet, but no other significant differences were detected among the groups. Perirenal white adipose tissue weight was higher and epididymal white adipose tissue weight tended to be higher in rats fed on a high-safflower-oil diet than in those fed on a low-fat diet. However, high-fat diets rich in n-3 PUFA, compared to a low-fat diet, did not increase the white adipose tissue mass. High-fat diets relative to a low-fat diet increased brown adipose tissue uncoupling protein 1 mRNA level. The increases were greater with fats rich in n-3 PUFA than with n-6 PUFA. A high-safflower-oil diet, compared to a low-fat diet, doubled the leptin mRNA level in white adipose tissue. However, high-fat diets rich in n-3 PUFA failed to increase it. Compared to a low-fat diet, high-fat diets down-regulated the glucose transporter 4 mRNA level in white adipose tissue. However, the decreases were attenuated with high-fat diets rich in n-3 PUFA. It is suggested that the alterations in gene expression in adipose tissue contribute to the physiological activities of n-3 PUFA in preventing body fat accumulation and in regulating glucose metabolism in rats.


2016 ◽  
Vol 58 (1) ◽  
pp. 10-18 ◽  
Author(s):  
Dan Shao ◽  
Xu-Wei Tian ◽  
Qiang Gao ◽  
Chang-Hong Liang ◽  
Shu-Xia Wang

Background The hypermetabolic environment of the myocardium, brown adipose tissue (BAT), and muscle will have an effect on the diagnostic accuracy of 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography (PET)/computed tomography (CT). A low carbohydrate, high fat, and protein-permitted diet before PET/CT scanning can reduce the degree of 18F-FDG uptake by the myocardium, brown adipose tissue, and skeletal muscle. Purpose To determine the effect of a low carbohydrate, high fat and protein-permitted diet on 18F-FDG uptake by myocardium, BAT, and muscle during PET/CT. Material and Methods A total of 126 patients who adhered to two meals before PET/CT scanning (that were prepared using a low carbohydrate, high fat, and protein-permitted diet), i.e. the diet group, were compared with 126 patients who fasted for at least 12 h prior to scanning (i.e. the fasting group). The degree of 18F-FDG uptake within the myocardium, BAT, and muscle were stratified into four grades (range, 0–3) with 0 for negligible uptake, and 3 for intense uptake. Correlations between the diet and fasting groups with respect to degree of 18F-FDG uptake within the myocardium, BAT, and muscle were analyzed. Results The degree of 18F-FDG uptake within the myocardium, BAT, and muscle in the diet group was significantly lower compared with the 18F-FDG uptake within myocardium, BAT, and muscle in the fasting group ( P < 0.001, P = 0.001, P < 0.001). Conclusion A low carbohydrate/high fat diet before 18F-FDG injection can suppress uptake of 18F-FDG within the myocardium, BAT, and skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document