scholarly journals Direct Phenotypical and Functional Dysregulation of Primary Human B Cells by Human Immunodeficiency Virus (HIV) Type 1 In Vitro

PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e39472 ◽  
Author(s):  
Ana Judith Perisé-Barrios ◽  
María Ángeles Muñoz-Fernandez ◽  
Marjorie Pion
2002 ◽  
Vol 76 (8) ◽  
pp. 4068-4072 ◽  
Author(s):  
Timothy S. Fisher ◽  
Pheroze Joshi ◽  
Vinayaka R. Prasad

ABSTRACT We isolated two template analog reverse transcriptase (RT) inhibitor-resistant mutants of human immunodeficiency virus (HIV) type 1 RT by using the DNA aptamer, RT1t49. The mutations associated, N255D or N265D, displayed low-level resistance to RT1t49, while high-level resistance could be observed when both mutations were present (Dbl). Molecular clones of HIV that contained the mutations produced replication-defective virions. All three RT mutants displayed severe processivity defects. Thus, while biochemical resistance to the DNA aptamer RT1t49 can be generated in vitro via multiple mutations, the overlap between the aptamer- and template-primer-binding pockets favors mutations that also affect the RT-template-primer interaction. Therefore, viruses with such mutations are replication defective. Potent inhibition and a built-in mechanism to render aptamer-resistant viruses replication defective make this an attractive class of inhibitors.


2001 ◽  
Vol 75 (11) ◽  
pp. 5421-5424 ◽  
Author(s):  
Renaud Burrer ◽  
Dominique Salmon-Ceron ◽  
Sophie Richert ◽  
Gianfranco Pancino ◽  
Gabriella Spiridon ◽  
...  

ABSTRACT The factors present in serum and plasma samples of human immunodeficiency virus (HIV)-infected patients that are responsible for the neutralization of four HIV type 1 (HIV-1) primary isolates in vitro have been analyzed. Purification of immunoglobulins (Ig) by affinity chromatography showed that the activities were mostly attributable to IgG and less frequently to IgA. For two samples, we have shown that the high-level and broad-spectrum inhibitory activity was essentially caused by non-Ig factors interfering with the measurement of antibody-specific neutralizing activity.


2002 ◽  
Vol 76 (14) ◽  
pp. 6929-6943 ◽  
Author(s):  
Livia Pedroza-Martins ◽  
W. John Boscardin ◽  
Deborah J. Anisman-Posner ◽  
Dominique Schols ◽  
Yvonne J. Bryson ◽  
...  

ABSTRACT Early infection of the thymus with the human immunodeficiency virus (HIV) may explain the more rapid disease progression among children infected in utero than in children infected intrapartum. Therefore, we analyzed infection of thymocytes in vitro by HIV type 1 primary isolates, obtained at or near birth, from 10 children with different disease outcomes. HIV isolates able to replicate in the thymus and impact thymopoiesis were present in all infants, regardless of the timing of viral transmission and the rate of disease progression. Isolates from newborns utilized CCR5, CXCR4, or both chemokine receptors to enter thymocytes. Viral expression was observed in discrete thymocyte subsets postinfection with HIV isolates using CXCR4 (X4) and isolates using CCR5 (R5), despite the wider distribution of CXCR4 in the thymus. In contrast to previous findings, the X4 primary isolates were not more cytopathic for thymocytes than were the R5 isolates. The cytokines interleukin-2 (IL-2), IL-4, and IL-7 increased HIV replication in the thymus by inducing differentiation and expansion of mature CD27+ thymocytes expressing CXCR4 or CCR5. IL-2 and IL-4 together increased expression of CXCR4 and CCR5 in this population, whereas IL-4 and IL-7 increased CXCR4 but not CCR5 expression. IL-2 plus IL-4 increased the viral production of all pediatric isolates, but IL-4 and IL-7 had a significantly higher impact on the replication of X4 isolates compared to R5 isolates. Our studies suggest that coreceptor use by HIV primary isolates is important but is not the sole determinant of HIV pathogenesis in the thymus.


1999 ◽  
Vol 43 (8) ◽  
pp. 2046-2050 ◽  
Author(s):  
Sarah Palmer ◽  
Robert W. Shafer ◽  
Thomas C. Merigan

ABSTRACT We assessed the effects of hydroxyurea (HU) at a concentration of 50 μM on the in vitro activities of 2′,3′-dideoxyinosine (ddI), 9-[2-(phosphonylmethoxy)ethyl]adenine (PMEA), and 9-[2-(phosphonylmethoxy)propyl]adenine (PMPA) against a wild-type human immunodeficiency virus (HIV) type 1 (HIV-1) laboratory isolate and a panel of five well-characterized drug-resistant HIV isolates. Fifty micromolar HU significantly increased the activities of ddI, PMEA, and PMPA against both the wild-type and the drug-resistant HIV-1 isolates. In fixed combinations, both ddI and PMEA were synergistic with HU against wild-type and drug-resistant viruses.


Sign in / Sign up

Export Citation Format

Share Document