scholarly journals Cell Wall Ingrowths in Nematode Induced Syncytia Require UGD2 and UGD3

PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e41515 ◽  
Author(s):  
Shahid Siddique ◽  
Miroslaw Sobczak ◽  
Raimund Tenhaken ◽  
Florian M. W. Grundler ◽  
Holger Bohlmann
1987 ◽  
Vol 17 (8) ◽  
pp. 846-854 ◽  
Author(s):  
H. B. Massicotte ◽  
C. A. Ackerley ◽  
R. L. Peterson

Seedlings of Alnuscrispa (Ait.) Pursh, Alnusrubra Bong., Eucalyptuspilularis Sm., and Betulaalleghaniensis Britt. were grown in plastic pouches and subsequently inoculated with Alpovadiplophloeus (Zeller & Dodge) Trappe & Smith (two different strains), Pisolithustinctorius (Pers.) Coker & Couch, and Laccariabicolor (R. Mre) Orton, respectively, to form ectomycorrhizae insitu. Alnus seedlings were inoculated with Frankia prior to inoculation with the mycosymbiont. The interface established between A. crispa and A. diplophloeus was complex, involving wall ingrowth formation in root epidermal cells and infoldings in Hartig net hyphae. Alnusrubra – A. diplophloeus ectomycorrhizae had an interface lacking epidermal cell wall ingrowths but with infoldings in Hartig net hyphae. The interface between E. pilularis –. tinctorius consisted of branching Hartig net hyphae between radially enlarged epidermal cells lacking wall ingrowths. Ectomycorrhizae between B. alleghaniensis and L. bicolor developed unique interfaces with radially enlarged epidermal cells near the apical meristem, which synthesized dense vacuolar deposits. Very fine branchings occurred in Hartig net hyphae.


2014 ◽  
Vol 5 ◽  
Author(s):  
William W. Adams III ◽  
Christopher M. Cohu ◽  
Véronique Amiard ◽  
Barbara Demmig-Adams

2014 ◽  
Vol 50 (1-2) ◽  
pp. 185-189 ◽  
Author(s):  
Scott D. Russell ◽  
David D. Cass

The synergidless female gametophyte of <em>Plumbago zeylanica</em> receives the pollen tube through specialized cell wall ingrowths at the base of the egg; tube growth continues between egg and central cells. Pollen tube discharge occurs between egg and central cell and results in release of two male gametes, vegetative nucleus, and some pollen cytoplasm. Except for the location of gamete discharge, details of transmission and fusion of gametic nuclei appear to conform to reports of these processes in taxa possessing conventional embryo sacs.


2014 ◽  
Vol 67 (3-4) ◽  
pp. 207-216 ◽  
Author(s):  
Grażyna Grymaszewska ◽  
Władysław Golinowski

The structure of syncytia induced by <i>Heterodera schachtii</i> Schmidt in roots of susceptible <i>Raphanus sativus</i> L. cv. "Siletina" and resistant radish cv. "Pegletta" was investigated. In the radish cultivar "Siletina" the syncytia most often appeared in the elongation zone of lateral roots. They were initiated in the procambium and pericycle but also included the parenchyma cells of vascular cylinder. In the susceptible cultivar "Siletina" the cells forming the female's syncytia were subject to hypertrophy. Their cytoplasmic density increased. The cytoplasm contained numerous organella. The proliferation of the smooth endoplasmic reticulum took place. Branched cell wall ingrowths were formed next to the vessels. In the male's syncytia the cells were only slightly increased. Their protoplasts contained few organelles. The cell wall ingrowths were poorly developed. In the syncytia of the resistant cultivar "Pegletta" there was only a slight increase of the cell volume. A well developed system of rough endoplasmic reticulum was observed in the protoplast. Distended ER cisterns contained fine fibrillar material. Material of similar structure also appeared in numerous small vacuoles. In resistant plants only some, not numerous, syncytia spreading in procambium fully developed and functioned long enough for the parasite females to mature. At an advanced stage of infection a well developed system of a rough ER was observed also in those syncytia and numerous vacuoles appeared.


1975 ◽  
Vol 53 (5) ◽  
pp. 432-438 ◽  
Author(s):  
Edward C. Yeung ◽  
R. L. Peterson

A number of cytological changes occur in rhizome transfer cells with age, the most striking being the appearance of microbodies each with a crystalline nucleoid and the presence of unusual plastids. Plastids in older transfer cells develop one or more electron-translucent regions and lack a defined thylakoid system. The number and size of vacuoles increases until ultimately one large vacuole is formed in old transfer cells. Accompanying these cytological changes in the cytoplasm the wall ingrowths change from being highly involuted and reaching a considerable distance into the cytoplasm of the cell to becoming thicker and less numerous, and finally form a rather uniformly thickened wall layer. The orientation of microfibrils in the thickened cell wall, resulting from the joining of the original wall projections adjacent to the tracheary elements, is random, while the wall thickenings away from the tracheary elements have more orderly arrangements of cellulose microfibrils.


Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 378
Author(s):  
Jason S. Henry ◽  
Karen S. Renzaglia

Following similar studies of cell wall constituents in the placenta of Phaeoceros and Marchantia, we conducted immunogold labeling TEM studies of Physcomitrium patens to determine the composition of cell wall polymers in transfer cells on both sides of the placenta. Sixteen monoclonal antibodies were used to localize cell wall epitopes in the basal walls and wall ingrowths in this moss. In general, placental transfer cell walls of P. patens contained fewer pectins and far fewer arabinogalactan proteins AGPs than those of the hornwort and liverwort. P. patens also lacked the differential labeling that is pronounced between generations in the other bryophytes. In contrast, transfer cell walls on either side of the placenta of P. patens were relatively similar in composition, with slight variation in homogalacturonan HG pectins. Compositional similarities between wall ingrowths and primary cell walls in P. patens suggest that wall ingrowths may simply be extensions of the primary cell wall. Considerable variability in occurrence, abundance, and types of polymers among the three bryophytes and between the two generations suggested that similarity in function and morphology of cell walls does not require a common cell wall composition. We propose that the specific developmental and life history traits of these plants may provide even more important clues in understanding the basis for these differences. This study significantly builds on our knowledge of cell wall composition in bryophytes in general and in transfer cells across plants.


Patterns of cell wall growth and ornamentation in unicellular algae, mainly in desmids, are compared with patterns generated by Tyson’s Brusselator, a two-morphogen reaction-diffusion model. The model generates hexagonal arrays of points in two dimensions, according well with the observed patterns of surface ornamentation on desmid zygospores. Computed patterns in one dimension and of branching on a circular disc account both qualitatively and quantitatively for morphogenetic patterns that develop following cell division in several desmid genera. Cell wall ingrowths appear to be under similar pattern control to wall outgrowths during morphogenesis, which suggests the involvement of a reaction-diffusion mechanism in establishing and correctly positioning the cell division septum. The application of the model to morphogenesis in Acetabularia and diatoms is also discussed.


Sign in / Sign up

Export Citation Format

Share Document