phloem cell
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Andrea Paterlini ◽  
Delfi Dorussen ◽  
Franziska Fichtner ◽  
Martin Rongen ◽  
Ruth Delacruz ◽  
...  

2020 ◽  
Author(s):  
Andrea Paterlini ◽  
Delfi Dorussen ◽  
Franziska Fichtner ◽  
Martin van Rongen ◽  
Ruth Delacruz ◽  
...  

AbstractThe plasticity of above ground plant architecture depends on the regulated re-activation and growth of axillary meristems laid down in the axils of leaves along the stem, which often arrest as dormant buds. Plasmodesmata connecting plant cells might control the movement of regulators involved in this developmental switch. Constructs capable of occluding these structures were employed in phloem cell types, because of the importance of phloem in local and systemic trafficking. We show that over-accumulation of callose within companion cells of the Arabidopsis inflorescence reduces the growth rates of activated buds, but does not affect bud activation. Growth rate reductions were not dependent on the phloem-mobile strigolactone receptor, which regulates bud activation. Furthermore, there was no correlation with early bud sugar profiles, which can also affect bud activity and depend on phloem-mediated delivery. It is therefore possible that an as yet unknown mobile signal is involved in modulating branch growth rate.


Trees ◽  
2020 ◽  
Vol 34 (5) ◽  
pp. 1281-1297
Author(s):  
Tobias Walter Miller ◽  
Dominik Florian Stangler ◽  
Elena Larysch ◽  
Thomas Seifert ◽  
Heinrich Spiecker ◽  
...  

Abstract Key message Phloem cell production was less influenced by environmental factors than xylem cell production. The moment of maximum number of conducting phloem cells occurred at the end of the growing season. Abstract The understanding of the seasonality of phloem production, its dependence on climatic factors and potential trade-offs with xylem cell production is still limited. This study determined key tree-ring phenological events and examined the dynamics of phloem and xylem cell production of Norway Spruce (Picea abies (L.) Karst) by sampling microcores during the growing seasons 2014 and 2015 along an elevational gradient (450 m, 750 m, 1250 m a.s.l.) in south-western Germany. The onset of phloem formation preceded xylem formation at each elevation by approximately 2 weeks, while cessation showed no clear differences between the stands. Maximum rates of xylem and phloem cell production were observed around the summer solstice, independent of elevation. No linear pattern was found in the occurrence of phenological events along the elevational gradient. Phloem formation appeared to be less sensitive to environmental conditions since no difference was found in the number of produced sieve cells between the 2 years of study, whereas the ratio of xylem to phloem cells was significantly smaller in the year 2015 with summer drought. The total number of conducting, non-collapsed phloem cells did not culminate as expected at the time of the potential maximum assimilate production, but at the end of the growing season. Thus, interpretation of phloem formation should not be limited to the function of assimilate transport but should follow a more holistic view of structural–functional relationships of conductive tissues and tree physiological processes.


2018 ◽  
Author(s):  
S Dinant ◽  
N Wolff ◽  
F De Marco ◽  
F Vilaine ◽  
L Gissot ◽  
...  

AbstractCell walls are highly complex structures that are modified during plant growth and development. For example, the development of phloem and xylem vascular cells, which participate in the transport of sugars and water as well as support, can be influenced by cell-specific cell wall composition. Here, we used synchrotron radiation-based infrared (SR-FTIR) and Raman spectroscopy to analyze the cell wall composition of wild-type and double mutant sweet11-1sweet12-1, which impairs sugar transport, Arabidopsis floral stem vascular tissue. The SR-FTIR spectra showed that in addition to modified xylem cell wall composition, phloem cell walls in the double mutant line were characterized by modified hemicellulose composition. Moreover, combining Raman spectroscopy with a Classification and Regression Tree (CART) method identified combinations of Raman shifts that could distinguish xylem vessels and fibers. Additionally, the disruption of SWEET11 and SWEET12 genes impacts xylem cell wall composition in a cell-specific manner, with changes in hemicelluloses and cellulose observed at the xylem vessel interface. These results suggest that the facilitated transport of sugars by transporters that exist between vascular parenchyma cells and conducting cells is important to ensuring correct phloem and xylem cell wall composition.HighlightCombining vibrational spectroscopy techniques and multivariate analysis shows that the disruption of SWEET genes impacts phloem cell wall composition and that the effect on xylem cell wall composition is cell-specific.


2015 ◽  
Vol 6 ◽  
Author(s):  
Jožica Gričar ◽  
Peter Prislan ◽  
Martin de Luis ◽  
Vladimír Gryc ◽  
Jana Hacurová ◽  
...  

Author(s):  
Raffael Lichtenberger ◽  
Kaori Furuta-Miyashima ◽  
Eva Hellmann ◽  
Ykä Helariutta
Keyword(s):  

2014 ◽  
Vol 5 ◽  
Author(s):  
William W. Adams III ◽  
Christopher M. Cohu ◽  
Véronique Amiard ◽  
Barbara Demmig-Adams

2012 ◽  
Vol 25 (11) ◽  
pp. 1396-1407 ◽  
Author(s):  
Jing Fan ◽  
Chunxian Chen ◽  
Qibin Yu ◽  
Abeer Khalaf ◽  
Diann S. Achor ◽  
...  

Although there are no known sources of genetic resistance, some Citrus spp. are reportedly tolerant to huanglongbing (HLB), presumably caused by ‘Candidatus Liberibacter asiaticus’. Time-course transcriptional analysis of tolerant rough lemon (Citrus jambhiri) and susceptible sweet orange (C. sinensis) in response to ‘Ca. L. asiaticus’ infection showed more genes differentially expressed in HLB-affected rough lemon than sweet orange at early stages but substantially fewer at late time points, possibly a critical factor underlying differences in sensitivity to ‘Ca. L. asiaticus’. Pathway analysis revealed that stress responses were distinctively modulated in rough lemon and sweet orange. Although microscopic changes (e.g., callose deposition in sieve elements and phloem cell collapse) were found in both infected species, remarkably, phloem transport activity in midribs of source leaves in rough lemon was much less affected by HLB than in sweet orange. The difference in phloem cell transport activities is also implicated in the differential sensitivity to HLB between the two species. The results potentially lead to identification of key genes and the genetic mechanism in rough lemon to restrain disease development and maintain (or recover) phloem transport activity. These potential candidate genes may be used for improving citrus tolerance (or even resistance) to HLB by genetic engineering.


Sign in / Sign up

Export Citation Format

Share Document