scholarly journals Evaluation of In Vitro Cross-Reactivity to Avian H5N1 and Pandemic H1N1 2009 Influenza Following Prime Boost Regimens of Seasonal Influenza Vaccination in Healthy Human Subjects: A Randomised Trial

PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e59674 ◽  
Author(s):  
Delia Bethell ◽  
David Saunders ◽  
Anan Jongkaewwattana ◽  
Jarin Kramyu ◽  
Arunee Thitithayanont ◽  
...  
2014 ◽  
Vol 20 (8) ◽  
pp. 1074-1080 ◽  
Author(s):  
Henning K Olberg ◽  
Rebecca J Cox ◽  
Jane K Nostbakken ◽  
Jan H Aarseth ◽  
Christian A Vedeler ◽  
...  

Background: The immunogenicity of influenza vaccines in MS patients undergoing immunomodulatory treatment is not well studied. Objectives: This explorative study investigated the influence of immunomodulatory treatment on MS patients receiving pandemic H1N1 (swine flu) vaccination in 2009 and seasonal influenza vaccination in 2010. Methods: We investigated the immune response to pandemic H1N1 vaccination among 113 MS patients and 216 controls during the pandemic of 2009. We also investigated the serological response to seasonal influenza vaccination (2010 – 2011 season) among 49 vaccinated and 62 non-vaccinated MS patients, versus 73 controls. We evaluated these vaccine responses by haemagglutination inhibition assay. Results: MS patients receiving immunomodulatory treatment had reduced protection (27.4%), compared to controls (43.5%) ( p = 0.006), after pandemic H1N1 vaccination (2009). The rates of protection were not influenced by interferon beta treatment (44.4% protected), but were reduced among patients receiving glatiramer acetate (21.6%), natalizumab (23.5%), and mitoxantrone (0.0%). A similar pattern emerged after MS patients received a seasonal influenza vaccination in 2010. Conclusions: These findings suggest that MS patients receiving immunomodulatory therapies other than interferon beta should be considered for a vaccine response analysis and perhaps be offered a second dose of the vaccine, in cases of insufficient protection.


2003 ◽  
Vol 10 (3) ◽  
pp. 495-497 ◽  
Author(s):  
Evert de Jonge ◽  
Philip W. Friederich ◽  
George P. Vlasuk ◽  
William E. Rote ◽  
Margaretha B. Vroom ◽  
...  

ABSTRACT The activation of coagulation has been shown to contribute to proinflammatory responses in animal and in vitro experiments. Here we report that the activation of coagulation in healthy human subjects by the administration of recombinant factor VIIa also elicits a small but significant increase in the concentrations of interleukin 6 (IL-6) and IL-8 in plasma. This increase was absent when the subjects were pretreated with recombinant nematode anticoagulant protein c2, the inhibitor of tissue factor-factor VIIa.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 756-756
Author(s):  
Simmy Thomas ◽  
Chris E Lawrence ◽  
Vernon Mar ◽  
Hue Kha ◽  
Lena A Basile

Abstract Interleukin-12 (IL-12) has potent immunoregulatory and hematopoietic properties, and exerts significant biological effects on natural killer (NK) cells, inducing IFNγ production and enhancing cytotoxicity. Two distinct NK cell populations correlate with their immunoregulatory functions. Mature CD56dimCD16bright NK cells represent 90% of the NK cells resident in the blood and can exert cytotoxic effects on transformed cells. Cytokine producing immature CD56brightCD16+/- NK cells exist in the blood (10% of total circulating NK cells) but are most prominently located in secondary lymphoid tissues. In the continued clinical development of recombinant human IL-12 (HemaMax™, rHuIL-12), to be used in combination with radiotherapy or chemotherapy for the treatment of cancer patients, we have performed a clinical safety study in healthy human subjects. A single subcutaneous (sc) dose of rHuIL-12 (12μg) was administered to 17 healthy human subjects. Placebo was administered to 5 healthy subjects. Peripheral blood samples were collected before rHuIL-12 administration, and up to Day 14 post administration. Immunophenotyping of blood cell populations was conducted by FACS. rHuIL-12 caused a transient decrease in peripheral blood CD56dimCD16bright NK cells, with a nadir (60% reduction from baseline) reached on Day 2 following rHuIL-12 administration. CD56dimCD16bright NK cell levels returned almost to baseline levels on Day 5. Placebo was without effect. Conversely rHuIL-12 caused an elevation in peripheral blood CD56brightCD16+/- NK cells, particularly between Days 2 and 3 after rHuIL-12 administration, which was sustained until a peak was reached on Day 5 (265% above baseline). Levels returned to baseline by Day 11, while placebo was without effect. rHuIL-12 did not impact the less functional CD56-CD16bright NK cell subset. CD56dimCD16bright NK cells expressing the IL-12 receptor β2 subunit (IL-12Rβ2+) showed a substantial, and transient, decrease in levels on Day 2. The plasma concentration of IFNγ was elevated to a peak over 35 fold above baseline level at 10hr. after rHuIL-12 administration. Human NK cells were negatively selected from highly enriched leukapheresis-derived blood and stimulated in vitro with 10 pM rHuIL-12. After 16hr. incubation these predominantly CD56dimCD16brightNK cells showed enhanced release of IFNγ and the increased killing of K562 cells, a human erythroleukemic cell line, when compared with vehicle controls. qPCR analysis of the human NK cell lysates showed rHuIL-12-induced elevation of CD56 (302%) and IL-12Rβ2 (587%) mRNA, when compared with vehicle controls. rHuIL-12 did not influence CD16 mRNA expression, but did increase the level of CD62L (L selectin, 206%) mRNA. The rapid 60% fall in circulating mature CD56dimCD16bright NK cells after rHuIL-12 administration to healthy human subjects suggests their immediate exit from peripheral blood into the tissue compartments. This could be mediated by the observed increase in NK cell CD62L mRNA expression seen in vitro. The sustained increase in immature CD56brightCD16+/- NK cell levels between Day 3 and 6 suggests their IL-12-induced development from CD34+ hematopoietic progenitor cells. In summary rHuIL-12 administration to healthy human subjects demonstrates differential effects on the two key NK cell populations in peripheral blood, increasing CD56brightCD16+/- NK cell numbers, potentially stimulating IFNγ release from and enhancing the cytotoxicity of the CD56dimCD16bright NK cells, and preparing this population for migration into tissues. rHuIL-12 thus shows excellent potential as an immunotherapeutic and hematopoietic agent for the treatment of cancer patients, by impacting the maturation, activation, immunoregulation, and cytolytic properties of NK cells. Disclosures Thomas: Neumedicines: Employment, Equity Ownership. Lawrence:Neumedicines: Employment, Equity Ownership. Mar:Neumedicines: Employment, Equity Ownership. Kha:Neumedicines: Employment, Equity Ownership. Basile:Neumedicines: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


2015 ◽  
Vol 4 ◽  
Author(s):  
P. Ramnani ◽  
A. Costabile ◽  
A. G. R. Bustillo ◽  
G. R. Gibson

AbstractThis placebo-controlled, randomised, double-blind, cross-over human feeding study aimed to determine the prebiotic effect of agave fructans. A total of thirty-eight volunteers completed this trial. The treatment consisted of 3 weeks' supplementation with 5 g/d of prebiotic agave fructan (Predilife) or equivalent placebo (maltodextrin), followed by a 2-week washout period following which subjects were crossed over to alternate the treatment arm for 3 weeks followed by a 2-week washout. Faecal samples were collected at baseline, on the last day of treatment (days 22 and 58) and washout (days 36 and 72), respectively. Changes in faecal bacterial populations, SCFA and secretory IgA were assessed using fluorescentin situhybridisation, GC and ELISA, respectively. Bowel movements, stool consistencies, abdominal comfort and mood changes were evaluated by a recorded daily questionnaire. In parallel, the effect of agave fructans on different regions of the colon using a three-stage continuous culture simulator was studied. Predilife significantly increased faecal bifidobacteria (log109·6 (sd0·4)) and lactobacilli (log107·7 (sd0·8)) compared with placebo (log109·2 (sd0·4);P = 0·00) (log107·4 (sd0·7);P= 0·000), respectively. No change was observed for other bacterial groups tested, SCFA, secretory IgA, and PGE2concentrations between the treatment and placebo. Denaturing gradient gel electrophoresis analysis indicated that bacterial communities were randomly dispersed and no significant differences were observed between Predilife and placebo treatments. Thein vitromodels showed similar increases in bifidobacterial and lactobacilli populations to that observed with thein vivotrial. To conclude, agave fructans are well tolerated in healthy human subjects and increased bifidobacteria and lactobacilli numbersin vitroandin vivobut did not influence other products of fermentation.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Matthijs Moerland ◽  
Karen Malone ◽  
Marlous Dillingh ◽  
Wieke Grievink ◽  
Joannes Reijers ◽  
...  

The role of TNFα in the pathogenesis of atherosclerosis is incompletely understood. TNFα blockade reduces the severity of various autoimmune diseases and the often related atherosclerosis. However, excessively released TNFα is only one component of the hyperactive innate immune system in such diseases. To provide more insight into the role of TNFα in the induction of inflammation, we explored the effects of TNFα blockade in human whole blood. TLR4/NLPR3 inflammasome challenges were applied to induce an inflammatory response. For this purpose, whole blood was incubated 4 hours with LPS and aluminium hydroxide (Alhydrogel). TNFα blockade was evaluated in vitro (LPS/Alhydrogel challenge in whole blood of 4 healthy human subjects, +concentration range of adalimumab) and ex vivo (LPS/Alhydrogel challenge in whole blood of 13 healthy human subjects receiving a single subcutaneous (sc) dose of 40 mg adalimumab). Cytokine release was evaluated in culture supernatants. In vitro, TNFα blockade strongly reduced TNFα levels detected; -97±1% at the lowest adalimumab concentration (0.3125 μg/mL). TNFα blockade did not affect LPS/Alhydrogel-induced IL-6, IL-1β and IL-18 release, but reduced IFNγ release; maximally -93±4% at 5 μg/mL adalimumab. A single sc adalimumab dose in healthy subjects reduced LPS/Alhydrogel-induced TNFα levels (maximally -98±1% on day 4, and still -58±59% on day 64; versus baseline). IL-6, IL-1β and IL-8 release were not reduced after anti-TNFα treatment. The effect of TNFα blockade on IFNγ release could not be reliably estimated due to highly variable IFNγ levels, especially between genders (baseline IFNγ levels 1248±1771 and 140±283 pg/mL, males vs females). TNFα is a major inducer of NFκB-driven cytokine gene transcription, but TNFα blocking did not reduce LPS/Alhydrogel-induced release of IL-1β, IL-6, IL-8 or IL-18 by primary human cells. This suggests that primary TLR4- and inflammasome-mediated signalling is sufficient to drive secretion of these cytokines. However, in vitro TNFα blockade did impair IFNγ release. Since IFNγ is a key factor in atherogenesis, exerting both pro- and anti-atherogenic properties, our data warrant further mechanistic investigation of the role of TNFα and anti-TNFα therapies in atherosclerosis.


Gerontology ◽  
1986 ◽  
Vol 32 (6) ◽  
pp. 308-316 ◽  
Author(s):  
Giorgio Emanuelli ◽  
Mario Lanzio ◽  
Teresa Anfossi ◽  
Silvia Romano ◽  
Giovanni Anfossi ◽  
...  

2013 ◽  
Vol 288 (23) ◽  
pp. 16371-16382 ◽  
Author(s):  
Qingchun Zhang ◽  
Matthew R. Schenauer ◽  
John D. McCarter ◽  
Gregory C. Flynn

During either production or storage, the LC214-HC220 disulfide in therapeutic antibodies can convert to a thioether bond. Here we report that a thioether forms at the same position on antibodies in vivo. An IgG1κ therapeutic antibody dosed in humans formed a thioether at this position at a rate of about 0.1%/day while circulating in blood. Thioether modifications were also found at this position in endogenous antibodies isolated from healthy human subjects, at levels consistent with this conversion rate. For both endogenous antibodies and recombinant antibodies studied in vivo, thioether conversion rates were faster for IgG1 antibodies containing λ light chains than those containing κ light chains. These light chain reaction rate differences were replicated in vitro. Additional mechanistic studies showed that base-catalyzed thioether formation through the light chain dehydrogenation was more preferred on antibodies with λ light chains, which may help explain the observed reaction rate differences.


Vaccine ◽  
2011 ◽  
Vol 29 (43) ◽  
pp. 7364-7369 ◽  
Author(s):  
Josette S.Y. Chor ◽  
Surinder K. Pada ◽  
Iain Stephenson ◽  
William B. Goggins ◽  
Paul A. Tambyah ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document