scholarly journals Pulmonary Surfactant Preserves Viability of Alveolar Type II Cells Exposed to Polymyxin B In Vitro

PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e62105 ◽  
Author(s):  
Guido Stichtenoth ◽  
Egbert Herting ◽  
Mario Rüdiger ◽  
Andreas Wemhöner
2000 ◽  
Vol 93 (3) ◽  
pp. 805-810 ◽  
Author(s):  
Catherine Paugam-Burtz ◽  
Serge Molliex ◽  
Bernard Lardeux ◽  
Corinne Rolland ◽  
Michel Aubier ◽  
...  

Background Pulmonary surfactant is a complex mixture of proteins and phospholipids synthetized by alveolar type II cells. Volatile anesthetics have been shown to reduce surfactant phospholipid biosynthesis by rat alveolar type II cells. Surfactant-associated protein C (SP-C) is critical for the alveolar surfactant functions. Our goal was to evaluate the effects of halothane and thiopental on SP-C messenger RNA (mRNA) expression in vitro in rat alveolar type II cells and in vivo in mechanically ventilated rats. Methods In vitro, freshly isolated alveolar type II cells were exposed to halothane during 4 h (1, 2, 4%) and 8 h (1%), and to thiopental during 4 h (10, 100 micrometer) and 8 h (100 micrometer). In vivo, rats were anesthetized with intraperitoneal thiopental or inhaled 1% halothane and mechanically ventilated for 4 or 8 h. SP-C mRNA expression was evaluated by ribonuclease protection assay. Results In vitro, 4-h exposure of alveolar type II cells to thiopental 10 and 100 micrometer increased their SP-C mRNA content to 145 and 197%, respectively, of the control values. In alveolar type II cells exposed for 4 h to halothane 1, 2, and 4%, the SP-C mRNA content increased dose-dependently to 160, 235, and 275%, respectively, of the control values. In vivo, in mechanically ventilated rats, 4 h of halothane anesthesia decreased the lung SP-C mRNA content to 53% of the value obtained in control (nonanesthetized, nonventilated) animals; thiopental anesthesia increased to 150% the lung SP-C mRNA content. Conclusions These findings indicate that halothane and thiopental used at clinically relevant concentrations modulate the pulmonary SP-C mRNA content in rats. In vivo, the additive role of mechanical ventilation is suggested.


1992 ◽  
Vol 262 (4) ◽  
pp. L446-L453 ◽  
Author(s):  
N. J. Gross ◽  
R. M. Schultz

Pulmonary alveolar surfactant is secreted by the alveolar epithelium in the form of lamellar bodylike structures that evolve sequentially into tubular myelin and vesicular forms that can be separated by centrifugation. Using an in vitro procedure by which the extracellular metabolism of pulmonary surfactant can be mimicked, namely cyclic variation in surface area, we previously reported that serine protease activity, which we called “convertase,” was required for the conversion of tubular myelin to the vesicular form. In the present studies we explored the biochemical requirements of this activity and sought the enzyme in alveolar products. Convertase activity has unusual requirements; in addition to being dependent on repetitive variations in surface area (cycling), it requires the presence of a high g fraction of lung secretions that is heat stable and not inhibitable by diisopropyl fluorophosphate (DFP) or alpha 1-antitrypsin, both typical serine protease inhibitors. The enzyme does not require calcium ions and has a pH optimum of 7.4. Convertase appears to be a component of surfactant itself because the ability of purified surfactant to convert to the vesicular form on cycling is impaired by pretreating it with DFP. A protein of Mr 75,000 that reacts with DFP and is heat sensitive was found in alveolar lavage, lamellar body preparations, and lung homogenate. It copurifies with lung surfactant in sucrose gradients. A similar DFP-reactive protein was observed in stable human neoplastic peripheral airway cell lines that express type II properties, suggesting that it may be a product of type II cells. We tentatively conclude that surfactant convertase is a 75,000 serine protease that is closely associated with surfactant phospholipid and that may be a product of alveolar type II cells.


1994 ◽  
Vol 13 (8) ◽  
pp. 551-557 ◽  
Author(s):  
Nian Chen ◽  
Mark R. Bowles ◽  
Susan M. Pond

1 The herbicide, paraquat, is accumulated by the energy-dependent polyamine uptake pathway of alveolar type II cells. There it undergoes redox cycling that results in an amplified production of toxic reactive oxygen species and depletion of NADPH and other reducing equivalents. These processes account for the lung being the major target organ for paraquat toxicity. 2 We postulated that paraquat-specific antibodies would inhibit the uptake of the herbicide by type II cells and prevent its toxicity. Accordingly, we examined the effects of paraquat-specific monoclonal antibodies and Fab fragments on the uptake, efflux and cytotoxicity of 50 μM paraquat in suspensions of alveolar type II cells isolated from the rat. 3 The uptake of paraquat was linear over 40 min. Over this time, the uptake rate was inhibited significantly (% inhibition, 73-89) by IgG (25 or 50 μM) or Fab fragments (50 or 100 μM). 4 The apparent efflux rate of paraquat, studied over 16 h, was increased significantly from 0.12 h-1 for the control cells in medium to 0.17 h-1 by paraquat-specific Fab fragments but was unaffected by the specific IgG. 5 Cytotoxicity was determined by measuring the release of 51Cr from the cells. The cytotoxicity of 50 μM paraquat was decreased significantly (percent decrease, 56-80%) in the presence of specific antibodies. 6 These studies in vitro suggest some potential for immunotherapy in selected cases of paraquat poisoning.


1999 ◽  
Vol 19 (5) ◽  
pp. 461-471 ◽  
Author(s):  
Salil K. Das ◽  
Shyamali Mukherjee

Granular type II cells located in the alveolar epithelium synthesize and secrete pulmonary surfactant and have specialized ion transport system. Alveolar type II cells are stimulated to secrete pulmonary surfactant by a variety of agonists. One mechanism by which extracellular signals are perceived by cells is the mobilization of intracellular Ca2+. Peripheral benzodiazepine receptors (PBRs) are present in both peripheral tissues and central nervous system. We have previously reported the presence of high density PBRs in lung and alveolar type II cells. It is known that both PBRs and beta-adrenergic receptors (beta-ARs) play an important role in cellular Ca2+ transport. Furthermore, we have suggested earlier that PBRs are someway functionally associated with the beta-ARs. The objective of the present study was to determine whether PBRs play any role in the secretion of surfactant by alveolar type II cells. Alveolar type II cells were isolated from normal weanling guinea pigs by panning method and incubated with 3H-palmitic acid in minimum essential medium to synthesize labelled dipalmitoyl phosphatidylcholine (DPPC). After washing, the cells were treated at 37°C for one hour with 10 μM isoproterenol (IP) in the presence and absence of 10 μM Ro 5-4864, an agonist for PBRs. After one hour, the release of labelled DPPC in the medium was analyzed. The control cells released DPPC without any addition of a ligand. However, the treatment of cells with IP, Ro 5-4864 and IP + Ro 5-4864 caused 24, 52 and 171% increase in the secretion of DPPC, respectively. In another experiment, type II cells were loaded with Fura-2 dye and treated with either IP or epineprine or Ro 5-4864. Both isoproterenol and epinephrine caused a significant increase in the level of cytosolic free Ca2+. However, Ro 5-4864 caused not only a decrease in the level of cytosolic free Ca2+ but also counteracted the stimulatory effect of IP. This may suggest that while ligands for ARs stimulate Ca2+ release into cytosol, the ligand for PBRs stimulates efflux of Ca2+ in alveolar type cells. Thus, the increased secretion of surfactant by the ligand of PBRs in alveolar type II cells may be mediated through its effects on increased Ca2+ efflux.


2004 ◽  
Vol 287 (5) ◽  
pp. L1056-L1065 ◽  
Author(s):  
D. L. H. Poelma ◽  
L. J. Zimmermann ◽  
W. A. van Cappellen ◽  
J. J. Haitsma ◽  
B. Lachmann ◽  
...  

The effects of surfactant protein B (SP-B) and SP-C on the uptake of surfactant-like liposomes by alveolar type II cells and alveolar macrophages were studied both in vivo and in vitro. In vivo, mechanically ventilated rats were intratracheally instilled with fluorescently labeled liposomes that had SP-B and/or SP-C incorporated in different concentrations. Consequently, the alveolar cells were isolated, and cell-associated fluorescence was determined using flow cytometry. The results show that the incorporation of SP-B does not influence the uptake, and it also does not in the presence of essential cofactors. The inclusion of SP-C in the liposomes enhanced the alveolar type II cells at a SP-C to lipid ratio of 2:100. If divalent cations (calcium and magnesium) were present at physiological concentrations in the liposome suspension, uptake of liposomes by alveolar macrophages was also enhanced. In vitro, the incorporation of SP-B affected uptake only at a protein-to-lipid ratio of 8:100, whereas the inclusion of SP-C in the liposomes leads to an increased uptake at a protein-to-lipid ratio of 1:100. From these results, it can be concluded that SP-B is unlikely to affect uptake of surfactant, whereas SP-C in combination with divalent cations and other solutes are capable of increasing the uptake.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 357
Author(s):  
Diane Lee ◽  
Mark Chambers

The epithelial lining of the lung is often the first point of interaction between the host and inhaled pathogens, allergens and medications. Epithelial cells are therefore the main focus of studies which aim to shed light on host-pathogen interactions, to dissect the mechanisms of local host immunity and study toxicology. If these studies are not to be conducted exclusively in vivo, it is imperative that in vitro models are developed with a high in vitro-in vivo correlation. We describe here a co-culture bilayer model of the bovine alveolus, designed to overcome some of the limitations encountered with mono-culture and live animal models. Our system includes bovine pulmonary arterial endothelial cells (BPAECs) seeded onto a permeable membrane in 24 well Transwell format. The BPAECs are overlaid with immortalised bovine alveolar type II epithelial cells and the bilayer cultured at air-liquid interface for 14 days before use; in our case to study host-mycobacterial interactions. Characterisation of novel cell lines and the bilayer model have provided compelling evidence that immortalised bovine alveolar type II cells are an authentic substitute for primary alveolar type II cells and their culture as a bilayer in conjunction with BPAECs provides a physiologically relevant in vitro model of the bovine alveolus.   The bilayer model may be used to study dynamic intracellular and extracellular host-pathogen interactions, using proteomics, genomics, live cell imaging, in-cell ELISA and confocal microscopy. The model presented in this article enables other researchers to establish an in vitro model of the bovine alveolus that is easy to set up, malleable and serves as a comparable alternative to in vivo models, whilst allowing study of early host-pathogen interactions, currently not feasible in vivo. The model therefore achieves one of the 3Rs objectives in that it replaces the use of animals in research of bovine respiratory diseases.


Sign in / Sign up

Export Citation Format

Share Document