scholarly journals Endothelial Nitric Oxide Synthase Regulates White Matter Changes via the BDNF/TrkB Pathway after Stroke in Mice

PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e80358 ◽  
Author(s):  
Xu Cui ◽  
Michael Chopp ◽  
Alex Zacharek ◽  
Ruizhuo Ning ◽  
Xiaoshuang Ding ◽  
...  
Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Xu Cui ◽  
Michael Chopp ◽  
Tao Yan ◽  
Ruizhuo Ning ◽  
Cynthia Roberts ◽  
...  

Background: Stroke induced white matter damage is associated with neurological functional deficits, but the underlying mechanisms are not well understood. Endothelial nitric oxide synthase knockout (eNOS-/-) mice exhibited a higher mortality, more severe neurological functional deficit, and decreased neurogenesis, angiogenesis and arteriogenesis after stroke than wild type mice. There are no reports as to whether eNOS is related to the white matter change post-stroke. Methods: Adult male C57BL/6 WT and eNOS -/- mice were subjected to permanent middle cerebral artery occlusion (MCAo) by a filament and sacrificed 7 days after MCAo. Functional evaluation, infarct volume measurement, and immunostaining for analysis of white matter changes were performed. Results: There is no significant difference in the infarction volume between wild type and eNOS -/- (wild type : 23.09%±3.32%; eNOS-/-: 27.83%±4.92%, p=0.436, n=9/group). However, eNOS -/- mice showed significantly decreased functional outcome tested by the singal pellet reaching test (wild type: 38.46%%±1.43%, eNOS-/-: 27.45%±2.41%, p=0.0017). eNOS -/- mice also exhibited increased white matter damage compared to wild type mice, including decrease: 1. Axonal density stained by Bielshowsky Silver in the ipsilateral striatal bundles (wild type: 22.06%±3.0%, eNOS-/-: 13.32%±2.18%,, p=0.031), and in the contralateral striatal bundles (wild type: 65.35%±3.97%, eNOS-/-: 29.38%±5.84%, p=0.02); 2. Density of phasphorylated neurofilament by SMI31-immunoflureoscent staining (wild type: 24.11%±2.06%, eNOS-/-: 7.90%±1.70%, p=0.009); 3. The number of CNPase-positive oligodendrocytes in the ischemic border (wild type: 52.23±5.10, eNOS-/-: 35.59±5.33, p=0.041); 4. The number of NG2-positive oligodendrocyte progenitors in the ischemic border (wild type: 26.22±2.31, eNOS-/-: 18.38±1.95, p=0.0187). There is no significant difference in the density of Luxol fast blue stained myelin in the ipsilateral striatal bundles between wild type and eNOS -/- mice (wild type: 25.21%±3.64%; eNOS-/-: 21.39%±6.29%, p=0.260). Conclusions: We are the first to report that eNOS not only regulates vascular changes and neurogenesis, but also plays an important role in white matter changes after stroke.


Author(s):  
Chi-Ming Wei ◽  
Margarita Bracamonte ◽  
Shi-Wen Jiang ◽  
Richard C. Daly ◽  
Christopher G.A. McGregor ◽  
...  

Nitric oxide (NO) is a potent endothelium-derived relaxing factor which also may modulate cardiomyocyte inotropism and growth via increasing cGMP. While endothelial nitric oxide synthase (eNOS) isoforms have been detected in non-human mammalian tissues, expression and localization of eNOS in the normal and failing human myocardium are poorly defined. Therefore, the present study was designed to investigate eNOS in human cardiac tissues in the presence and absence of congestive heart failure (CHF).Normal and failing atrial tissue were obtained from six cardiac donors and six end-stage heart failure patients undergoing primary cardiac transplantation. ENOS protein expression and localization was investigated utilizing Western blot analysis and immunohistochemical staining with the polyclonal rabbit antibody to eNOS (Transduction Laboratories, Lexington, Kentucky).


2010 ◽  
Vol 4 (1) ◽  
pp. 27-36
Author(s):  
Ming-Jui Hung ◽  
Ming-Yow Hung ◽  
Wen-Jin Cherng ◽  
Li-Fu Li

Abstract Background: Positive pressure ventilation with large tidal volumes has been shown to cause lung injury via the serine/threonine kinase-protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS)-pathways. However, the effects of high tidal volume (VT) ventilation on the heart are unclear. Objectives: Evaluate the effect of VT ventilation on the cardiac vascular permeability and intracellular Akt and eNOS signaling pathway. Methods: C57BL/6 and Akt knock-out (heterozygotes, +/−) mice were exposed to high VT (30 mL/kg) mechanical ventilation with room air for one and/or five hours. Results: High VT ventilation increased cardiac microvascular permeability and eNOS phosphorylation in a timedependent manner. Serum cardiac troponin I was increased after one hour of high VT ventilation. Cardiac Akt phosphorylation was accentuated after one hour and attenuated after five hours of high VT ventilation. Pharmacological inhibition of Akt with LY294002 and high VT ventilation of Akt+/− mice attenuated cardiac Akt phosphorylation, but not eNOS phosphorylation. Conclusion: High VT ventilation increased cardiac myocardial injury, microvascular permeability, and eNOS phosphorylation. Involvement of cardiac Akt in high VT ventilation was transient.


Sign in / Sign up

Export Citation Format

Share Document