scholarly journals Different Stimuli, Different Spatial Codes: A Visual Map and an Auditory Rate Code for Oculomotor Space in the Primate Superior Colliculus

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e85017 ◽  
Author(s):  
Jungah Lee ◽  
Jennifer M. Groh
2021 ◽  
Author(s):  
Ziad M. Hafed

The primate superior colliculus (SC) contains a topographic map of visual field locations, such that the anatomical location of any given active neuron defines a desired eye movement amplitude and direction. Complementing such a spatial code, SC neurons also exhibit saccade-related bursts that are tightly synchronized with movement onset. Current models suggest that such bursts, and their properties, constitute a temporal rate code that may dictate moment-to-moment movement evolution. However, a recent result demonstrated altered movement properties with minimal changes in SC motor burst strengths (Buonocore, Tian, Khademi, & Hafed, 2021). Here, I support such a dissociation between the SC temporal rate code and instantaneous movement evolution: SC burst strength varies depending on whether saccades are directed towards the upper or lower visual fields, but the movements themselves have similar kinematics. Thus, SC saccade-related motor bursts do not necessarily dictate movement kinematics, motivating investigating other possible functional roles for these bursts.


Author(s):  
Caroline A. Miller ◽  
Laura L. Bruce

The first visual cortical axons arrive in the cat superior colliculus by the time of birth. Adultlike receptive fields develop slowly over several weeks following birth. The developing cortical axons go through a sequence of changes before acquiring their adultlike morphology and function. To determine how these axons interact with neurons in the colliculus, cortico-collicular axons were labeled with biocytin (an anterograde neuronal tracer) and studied with electron microscopy.Deeply anesthetized animals received 200-500 nl injections of biocytin (Sigma; 5% in phosphate buffer) in the lateral suprasylvian visual cortical area. After a 24 hr survival time, the animals were deeply anesthetized and perfused with 0.9% phosphate buffered saline followed by fixation with a solution of 1.25% glutaraldehyde and 1.0% paraformaldehyde in 0.1M phosphate buffer. The brain was sectioned transversely on a vibratome at 50 μm. The tissue was processed immediately to visualize the biocytin.


Sign in / Sign up

Export Citation Format

Share Document