scholarly journals Population-Based Hospitalization Burden of Influenza A Virus Subtypes and Antigenic Drift Variants in Children in Hong Kong (2004–2011)

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e92914 ◽  
Author(s):  
Susan S. Chiu ◽  
Janice Y. C. Lo ◽  
Kwok-Hung Chan ◽  
Eunice L. Y. Chan ◽  
Lok-Yee So ◽  
...  
2005 ◽  
Vol 79 (15) ◽  
pp. 9926-9932 ◽  
Author(s):  
Kyoko Shinya ◽  
Masato Hatta ◽  
Shinya Yamada ◽  
Ayato Takada ◽  
Shinji Watanabe ◽  
...  

ABSTRACT In 2003, H5N1 avian influenza virus infections were diagnosed in two Hong Kong residents who had visited the Fujian province in mainland China, affording us the opportunity to characterize one of the viral isolates, A/Hong Kong/213/03 (HK213; H5N1). In contrast to H5N1 viruses isolated from humans during the 1997 outbreak in Hong Kong, HK213 retained several features of aquatic bird viruses, including the lack of a deletion in the neuraminidase stalk and the absence of additional oligosaccharide chains at the globular head of the hemagglutinin molecule. It demonstrated weak pathogenicity in mice and ferrets but caused lethal infection in chickens. The original isolate failed to produce disease in ducks but became more pathogenic after five passages. Taken together, these findings portray the HK213 isolate as an aquatic avian influenza A virus without the molecular changes associated with the replication of H5N1 avian viruses in land-based poultry such as chickens. This case challenges the view that adaptation to land-based poultry is a prerequisite for the replication of aquatic avian influenza A viruses in humans.


2019 ◽  
Vol 8 (32) ◽  
Author(s):  
Jennifer Chang ◽  
Tavis K. Anderson ◽  
Michael A. Zeller ◽  
Phillip C. Gauger ◽  
Amy L. Vincent

The diversity of the 8 genes of influenza A viruses (IAV) in swine reflects introductions from nonswine hosts and subsequent antigenic drift and shift. Here, we curated a data set and present a pipeline that assigns evolutionary lineage and genetic clade to query gene segments.


BMJ ◽  
2009 ◽  
Vol 339 (oct27 1) ◽  
pp. b4164-b4164 ◽  
Author(s):  
J. T F Lau ◽  
N. C Y Yeung ◽  
K C Choi ◽  
M. Y M Cheng ◽  
H Y Tsui ◽  
...  

2020 ◽  
Vol 33 ◽  
pp. 101510
Author(s):  
Liang Chen ◽  
Jiasheng Xiong ◽  
Li Peng ◽  
Pengfei Yang ◽  
Hao Yu ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 405 ◽  
Author(s):  
Zhang ◽  
Xu ◽  
Zhang ◽  
Liu ◽  
Xue ◽  
...  

Influenza A viruses are dynamically epidemic and genetically diverse. Due to the antigenic drift and shift of the virus, seasonal vaccines are required to be reformulated annually to match with current circulating strains. However, the mismatch between vaccinal strains and circulating strains occurs frequently, resulting in the low efficacy of seasonal vaccines. Therefore, several “universal” vaccine candidates based on the structure and function of the hemagglutinin (HA) protein have been developed to meet the requirement of a broad protection against homo-/heterosubtypic challenges. Here, we review recent novel constructs and discuss several important findings regarding the broad protective efficacy of HA-based universal vaccines.


2020 ◽  
Author(s):  
Deborah Chang ◽  
William E. Hackett ◽  
Lei Zhong ◽  
Xiu-Feng Wan ◽  
Joseph Zaia

AbstractInfluenza A virus (IAV) mutates rapidly, resulting in antigenic drift and poor year-to-year vaccine effectiveness. One challenge in designing effective vaccines is that genetic mutations frequently cause amino acid variations in IAV envelope protein hemagglutinin (HA) that create new N-glycosylation sequons; resulting N-glycans cause antigenic shielding, allowing viral escape from adaptive immune responses. Vaccine candidate strain selection currently involves correlating antigenicity with HA protein sequence among circulating strains, but quantitative comparison of site-specific glycosylation information may likely improve the ability to design vaccines with broader effectiveness against evolving strains. However, there is poor understanding of the influence of glycosylation on immunodominance, antigenicity, and immunogenicity of HA, and there are no well-tested methods for comparing glycosylation similarity among virus samples. Here, we present a method for statistically rigorous quantification of similarity between two related virus strains that considers the presence and abundance of glycopeptide glycoforms. We demonstrate the strength of our approach by determining that there was a quantifiable difference in glycosylation at the protein level between wild-type IAV HA from A/Switzerland/9715293/2013 (SWZ13) and a mutant strain of SWZ13, even though no N-glycosylation sequons were changed. We determined site-specifically that WT and mutant HA have varying similarity at the glycosylation sites of the head domain, reflecting competing pressures to evade host immune response while retaining viral fitness. To our knowledge, our results are the first to quantify changes in glycosylation state that occur in related proteins of considerable glycan heterogeneity. Our results provide a method for understanding how changes in glycosylation state are correlated with variations in protein sequence, which is necessary for improving IAV vaccine strain selection. Understanding glycosylation will be especially important as we find new expression vectors for vaccine production, as glycosylation state depends greatly on the host species.


Sign in / Sign up

Export Citation Format

Share Document