scholarly journals Training-Dependent Associative Learning Induced Neocortical Structural Plasticity: A Trace Eyeblink Conditioning Analysis

PLoS ONE ◽  
2014 ◽  
Vol 9 (4) ◽  
pp. e95317 ◽  
Author(s):  
Lily S. Chau ◽  
Alesia V. Prakapenka ◽  
Liridon Zendeli ◽  
Ashley S. Davis ◽  
Roberto Galvez
2021 ◽  
Author(s):  
Amy P Rapp ◽  
Timothy J Hark ◽  
John M Power ◽  
M Matthew Oh ◽  
Jeffrey N Savas ◽  
...  

Neuroscience techniques, including in vivo recording, have allowed for a great expansion in knowledge; however, this technology may also affect the very phenomena researchers set out to investigate. Including both female and male mice in our associative learning experiments shed light on sex differences on the impact of chronic implantation of tetrodes on learning. While previous research showed intact female mice acquired trace eyeblink conditioning faster than male and ovariectomized females, implantation of chronic microdrive arrays showed sexually dimorphic effects on learning. Microdrive implanted male mice acquired the associative learning paradigm faster than both intact and ovariectomized females. These effects were not due to the weight of the drive alone, as there were no significant sex-differences in learning of animals that received dummy drive implants without tetrodes lowered into the brain. Tandem mass tag mass spectrometry and western blot analysis suggest that significant alterations in the MAPK pathway, acute inflammation, and brain derived neurotrophic factor may underlie these observed sex- and surgery-dependent effects on learning.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Carmen Lin ◽  
Venus N Sherathiya ◽  
M Matthew Oh ◽  
John F Disterhoft

Whether and how persistent firing in lateral entorhinal cortex layer III (LEC III) supports temporal associative learning is still unknown. In this study, persistent firing was evoked in vitro from LEC III neurons from young and aged rats that were behaviorally naive or trained on trace eyeblink conditioning. Persistent firing ability from neurons from behaviorally naive aged rats was lower compared to neurons from young rats. Neurons from learning impaired aged animals also exhibited reduced persistent firing capacity, which may contribute to aging-related learning impairments. Successful acquisition of the trace eyeblink task, however, increased persistent firing ability in both young and aged rats. These changes in persistent firing ability are due to changes to the afterdepolarization, which may in turn be modulated by the postburst afterhyperpolarization. Together, these data indicate that successful learning increases persistent firing ability and decreases in persistent firing ability contribute to learning impairments in aging.


2012 ◽  
Vol 108 (3) ◽  
pp. 863-870 ◽  
Author(s):  
Bridget M. McKay ◽  
M. Matthew Oh ◽  
Roberto Galvez ◽  
Jeffrey Burgdorf ◽  
Roger A. Kroes ◽  
...  

Enhanced intrinsic neuronal excitability of hippocampal pyramidal neurons via reductions in the postburst afterhyperpolarization (AHP) has been hypothesized to be a biomarker of successful learning. This is supported by considerable evidence that pharmacologic enhancement of neuronal excitability facilitates learning. However, it has yet to be demonstrated that pharmacologic reduction of neuronal excitability restricted to the hippocampus can retard acquisition of a hippocampus-dependent task. Thus, the present study was designed to address this latter point using a small conductance potassium (SK) channel activator NS309 focally applied to the dorsal hippocampus. SK channels are important contributors to intrinsic excitability, as measured by the medium postburst AHP. NS309 increased the medium AHP and reduced excitatory postsynaptic potential width of CA1 neurons in vitro. In vivo, NS309 reduced the spontaneous firing rate of CA1 pyramidal neurons and impaired trace eyeblink conditioning in rats. Conversely, trace eyeblink conditioning reduced levels of SK2 channel mRNA and protein in the hippocampus. Therefore, the present findings indicate that modulation of SK channels is an important cellular mechanism for associative learning and further support postburst AHP reductions in hippocampal pyramidal neurons as a biomarker of successful learning.


Author(s):  
Wei-Wei Zhang ◽  
Rong-Rong Li ◽  
Jie Zhang ◽  
Jie Yan ◽  
Qian-Hui Zhang ◽  
...  

AbstractWhile the hippocampus has been implicated in supporting the association among time-separated events, the underlying cellular mechanisms have not been fully clarified. Here, we combined in vivo multi-channel recording and optogenetics to investigate the activity of hippocampal interneurons in freely-moving mice performing a trace eyeblink conditioning (tEBC) task. We found that the hippocampal interneurons exhibited conditioned stimulus (CS)-evoked sustained activity, which predicted the performance of conditioned eyeblink responses (CRs) in the early acquisition of the tEBC. Consistent with this, greater proportions of hippocampal pyramidal cells showed CS-evoked decreased activity in the early acquisition of the tEBC. Moreover, optogenetic suppression of the sustained activity in hippocampal interneurons severely impaired acquisition of the tEBC. In contrast, suppression of the sustained activity of hippocampal interneurons had no effect on the performance of well-learned CRs. Our findings highlight the role of hippocampal interneurons in the tEBC, and point to a potential cellular mechanism subserving associative learning.


Sign in / Sign up

Export Citation Format

Share Document