scholarly journals The Continuous Incorporation of Carbon into Existing Sassafras albidum Fine Roots and Its Implications for Estimating Root Turnover

PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e95321 ◽  
Author(s):  
Thomas S. Adams ◽  
David M. Eissenstat
2009 ◽  
Vol 55 (No. 12) ◽  
pp. 556-566 ◽  
Author(s):  
B. Konôpka

Interspecific comparisons of the fine root “behaviour” under stressful situations may answer questions related to resistance to changing environmental conditions in the particular tree species. Our study was focused on Norway spruce (<I>Picea abies</I> [L.] Karst.) and European beech (<I>Fagus sylvatica</I> L.) grown in an acidic soil where acidity was caused by past air pollution in the Kysucké Beskydy Mts., North-Western Slovakia. Between April and October 2006, the following fine root traits were studied: biomass and necromass seasonal dynamics, vertical distribution, production, mortality, fine root turnover and production to mortality ratio. Sequential soil coring was repeatedly implemented in April, June, July, September, and October including the soil layers of 0–5, 5–15, 15–25, and 25–35 cm. Results indicated that spruce had a lower standing stock of fine roots than beech, and fine roots of spruce were more superficially distributed than those of beech. Furthermore, we estimated higher seasonal dynamics and also higher turnover of fine roots in spruce than in beech. The production to mortality ratio was higher in beech than in spruce, which was hypothetically explained as the effect of drought episodes that occurred in July and August. The results suggested that the beech root system could resist a physiological stress better than that of spruce. This conclusion was supported by different vertical distributions of fine roots in spruce and beech stands.


1986 ◽  
Vol 16 (3) ◽  
pp. 529-538 ◽  
Author(s):  
Henry L. Gholz ◽  
Laurel C. Hendry ◽  
Wendell P. Cropper Jr.

Seasonal patterns of live, dead, and unknown viability fine (diameter, ≤10 mm) roots of pine and other vegetation in a young and old slash pine stand were sampled using monthly soil coring over a 24-month period. A distinct unimodal pattern for roots <1 mm in diameter in the surface soil was observed. Live roots increased in the spring to a peak in midsummer and then declined. Larger roots and roots deeper in the soil showed less distinct seasonal patterns, although maximum and minimum annual biomass values were sometimes significantly different. Decomposition of fine roots in buried mesh bags averaged 15–20% per year for roots <5 mm in diameter. An analysis of seasonal dynamics and decompositon rates were combined to construct organic matter budgets for the forest floor and soil. Estimated net root production for roots ≤10 mm in diameter was 590 and 626 g m−2 year−1 in the young and old stand, respectively. Root turnover contributed 214 and 452 g m−2 year−1 to detrital pools on the two sites, with the balance of production accumulating as standing root biomass or lost in decomposition. Root production and turnover rates decreased with increasing root diameter; most production was from roots <1 mm. Pine root production was greater and nonpine production was less in the older stand than in the younger stand. Compared with other temperate and boreal forests, root biomass was high and net root production relatively low. The low production:biomass ratio may be characteristic of low latitude (warm) and (or) low nutrient forest types.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xinping Liu ◽  
Yongqing Luo ◽  
Li Cheng ◽  
Hongjiao Hu ◽  
Youhan Wang ◽  
...  

Plant fine root turnover is a continuous process both spatially and temporally, and fine root decomposition is affected by many biotic and abiotic factors. However, the effect of the living roots and the associated mycorrhizal fungal mycelia on fine root decomposition remains unclear. The objective of this study is to explore the influence of these biotic factors on fine root decomposition in a semi-arid ecosystem. In this study, we investigated the effect of fine roots and mycelia on fine root decomposition of a pioneer shrub (Artemisia halodendron) in Horqin sandy land, northeast China, by the ingrowth core method combined with the litterbag method. Litterbags were installed in cores. Results showed that core a allowed the growth of both fine roots and mycelia (treatment R + M), core b only allowed the growth of mycelia (treatment M), and in core c the fine root and mycelia growth were restricted and only bulk soil was present (treatment S). These findings suggest that the process of root decomposition was significantly affected by the living roots and mycelia, and carbon (C) and nitrogen (N) concentration dynamics during root decomposition differed among treatments. Mycelia significantly stimulated the mass loss and C and N release during root decomposition. Treatment R + M significantly stimulated the accumulation of soil total C, total N, and organic N under litterbags. The mycelia significantly stimulated the accumulation of the inorganic N (ammonium-N and nitrate-N) but the presence of fine roots weakened nitrate-N accumulation. The presence of living roots and associated mycelia strongly affected the process of root decomposition and matter release in the litter-soil system. The results of this study should strengthen the understanding of root-soil interactions.


2013 ◽  
Vol 49 (4) ◽  
pp. 556-573 ◽  
Author(s):  
M. D. JESSY ◽  
P. PRASANNAKUMARI ◽  
JOSHUA ABRAHAM

SUMMARYUnderstanding the growth dynamics of fine roots and their contribution to soil organic carbon and nutrient pools is crucial for estimating ecosystem carbon and nutrient cycling and how these are influenced by climate change. Rubber is cultivated in more than 10 million hectare globally and the area under rubber cultivation is fast expanding due to socio-economic reasons, apart from the importance given to this species for eco-restoration of degraded lands. An experiment was conducted to quantify fine root production, fine root turnover and carbon and nutrient cycling through fine roots in rubber plantations with different soil nutrient status and rainfall pattern. Fine root production was estimated by sequential coring and ingrowth core methods. Fine root decomposition was determined by the litter bag technique. Carbon and nutrient contents in fine roots were determined and their turnover was computed. Fine root biomass in the top 0–7.5-cm soil layer showed significant seasonal fluctuation and the fluctuations were particularly wide during the transition period from the dry season to the rainy season. Fine root production estimated by the different methods was significantly higher at the lower fertility site and during the higher soil moisture stress year. Fine root turnover ranged from 1.04 to 2.29 year−1. Root carbon and nutrient status showed seasonal variation and lower status was observed during the rainy season. The annual recycling of C, N, P, K, Ca and Mg through fine roots ranged from 590 to 1758, 30 to 85, 3 to 12, 13 to 31, 11 to 35 and 6 to 13 kg ha−1, respectively. Substantial quantities of carbon and nutrients were recycled annually in rubber plantations through fine roots. When soil moisture and nutrient stress were more severe, fine root production, turnover and carbon and nutrient recycling through fine roots were higher.


1996 ◽  
Vol 26 (8) ◽  
pp. 1326-1336 ◽  
Author(s):  
R.W. Ruess ◽  
K. Van Cleve ◽  
J. Yarie ◽  
L.A. Viereck

Fine root production and turnover were studied in hardwood and coniferous taiga forests using three methods. (1) Using soil cores, fine root production ranged from 1574 ± 76 kg•ha−1•year−1 in the upland white spruce (Piceaglauca (Moench) Voss) stand to 4386 ± 322 kg•ha−1•year−1 in the floodplain balsam poplar (Populusbalsamifera L.) stand, accounting for 49% of total production for coniferous stands and 32% of total production for deciduous stands. Fine root turnover rates were higher in floodplain (0.90 ± 0.06 year−1) stands than in upland (0.42 ± 0.10 year−1) stands. Across all sites, the ratio of fine root turnover to litter fall averaged 2.2 for biomass and 2.8 for N. Both values were higher in floodplain stands than in upland stands, and in coniferous stands than in deciduous stands. (2) The C budget method showed that C allocation to fine roots varied from 150 to 425 g C•m−2•year−1 and suggested that soil respiration was more dependent on C derived from roots than from aboveground inputs. The C allocation ratio (C to roots: C to litter fall) was inversely correlated with litter-fall C and varied from 0.3 to 69.5; there was a tendency for higher proportional belowground allocation in coniferous stands than in deciduous stands and the highest levels were at the earliest successional sites. (3) Estimates of apparent N uptake (Nu), N allocation to fine roots, and fine root production based on N budget calculations showed that annual aboveground N increments exceeded Nu estimates at half the sites, indicating that the method failed to account for large amounts of N acquired by plants. This suggests that plant and (or) mycorrhizal uptake of soil organic N may be more significant to ecosystem N cycling than mineral N turnover by the soil microbial biomass.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 541d-541
Author(s):  
Christina Wells ◽  
David Eissenstat ◽  
Michael Glenn

Damage to the root system by soil insects and pathogenic fungi is difficult to assess and often goes unnoticed until a tree exhibits significant decline above ground. In this study, below-ground imaging technology was used to quantify fine root turnover in peach and to determine what percentage of root death may be caused by soil pests in an apparently healthy orchard. The study was conducted on six 15-year-old `Loring' peach trees on Halford rootstock in Kearneysville, W.Va. Five root observation tubes were placed in the soil beneath each tree in Apr. 1996. Each tube was randomly assigned one of five soil drench treatments: Lorsban 4E insecticide, Ridomil 2E fungicide, a combination of both pesticides, 1/10th strength Hoagland's solution, or water. A portable VCR and camera system were used to record images of fine roots (<1 mm diameter) growing along the tubes at biweekly intervals from May 1996 through Nov. 1997. The images were used to construct a database of life history information for more than 1500 individual roots. Peach root survivorship was influenced by root diameter and pesticide treatment. Fine roots on tubes receiving either of the pesticide treatments had higher survivorship than roots on control tubes for all diameter classes. The effect was most pronounced for white roots <0.5 mm in diameter, whose survivorship during the growing season was increased by 45% when both insecticide and fungicide were applied. These results suggest that a substantial fraction of fine root death may be caused by interactions with the soil fauna.


2013 ◽  
Vol 59 (3) ◽  
Author(s):  
Bohdan Konôpka ◽  
Jozef Pajtík ◽  
Miriam Maľová

AbstractFine roots (defined by a maximum diameter of 2 mm) and assimilatory organs are the compartments which rotate carbon much faster than any other tree part. We focused on quantification of fine roots in young European beech and Norway spruce trees growing under the same ecological conditions. Standing stock of fine roots was estimated by soil coring during 2009 - 2012. Fine root production was established by the in-growth bag method. Standing stock and productions of fine roots were comparable in both tree species. The quantity of fine root biomass (at a soil depth of 0 -50 cm) varied inter-annually between 6.08 and 7.41 t per ha in the beech and from 5.10 to 6.49 t per ha in the spruce stand. Annual production of fine roots (soil depth of 0 - 30 cm) was between 1.11 and 1.63 t ha-1 in beech and between 0.95 and 1.54 t.ha-1 in spruce. We found that fine root standing stock at the beginning of each growing season was related to climatic conditions in the previous year. Annual fine root production was influenced by the climatic situation of the current year. In general, a maximum standing stock of fine roots as well as a relatively slow fine root turnover is expected in young forest stands. Whereas production of fine roots prevailed over mortality in a favorable year (sufficiency of precipitations and slightly above-average temperatures in 2010), there was a reverse situation in an unfavorable year (drought episodes in 2011). We concluded that although both forest types represented contrasting turnovers of assimilatory organs (once a year and once in 5 years in beech and spruce respectively), fine root turnover rates were very similar (approx. once per four years).


1998 ◽  
Vol 28 (6) ◽  
pp. 893-902 ◽  
Author(s):  
Rose-Marie Rytter ◽  
Lars Rytter

The aim of the present study was to calculate fine-root turnover rates in stands of basket willow (Salix viminalis L.). Fine-root number was recorded in minirhizotrons in two adjacent short-rotation forest stands. Stand A was a regularly spaced plantation on clay soil. Stand B contained lysimeters, which were inserted in the soil and filled with either clay soil or washed sand. Both stands were irrigated and fertilized daily, to provide near-optimum conditions with respect to water and nutrient availability. The calculations were based on morphological studies and observations in minirhizotrons. Mean fine-root ages of growth and decay phases were calculated from third-order polynomials, and by summing up those phases and adding a short stationary phase, turnover time was obtained. Calculated fine-root turnover rates were 4.9–5.8 year–1 in the plantation and 4.8–8.1 year–1 in the lysimeters. No significant difference in turnover rates was detected between clay and sand substrates. Soil temperature had a significant effect on the decay phase, and in the calculations the data were weighted by soil temperature intervals. The importance of observing fine roots throughout the year is stressed.


2002 ◽  
Vol 32 (9) ◽  
pp. 1692-1697 ◽  
Author(s):  
Geraldine L Tierney ◽  
Timothy J Fahey

We examined fine root turnover using both the minirhizotron and radiocarbon methods within the organic horizon of a northern hardwood forest to better understand discrepancies in turnover estimates obtained using these methods. The recently developed radiocarbon method estimates the mean age of organic matter by comparing its radiocarbon content to recorded atmospheric radiocarbon levels, which peaked in the 1960s as a result of thermonuclear weapons testing. The radiocarbon content of fine roots harvested from minirhizotron tubes did not differ from that of roots collected from the soil, suggesting these two methods sampled the same population of fine roots. However, long-term observation of fine root survivorship using minirhizotrons showed that root age distribution is positively skewed, causing systematic overestimation of fine root turnover by the minirhizotron method and underestimation by the radiocarbon method. We developed a parametric regression model of fine root survivorship. Our estimate of fine root turnover (about 30% per year) using this variation of the minirhizotron method was supported by radiocarbon data considered in conjunction with fine root age distribution.


Sign in / Sign up

Export Citation Format

Share Document