scholarly journals Comprehensive Multiple Molecular Profile of Epithelial Mesenchymal Transition in Intrahepatic Cholangiocarcinoma Patients

PLoS ONE ◽  
2014 ◽  
Vol 9 (5) ◽  
pp. e96860 ◽  
Author(s):  
Xiao-Yong Huang ◽  
Chi Zhang ◽  
Jia-Bin Cai ◽  
Guo-Ming Shi ◽  
Ai-Wu Ke ◽  
...  
2021 ◽  
Author(s):  
Jiafeng Chen ◽  
Zheng Gao ◽  
Xiaogang Li ◽  
Yinghong Shi ◽  
Zheng Tang ◽  
...  

Abstract Background: SQSTM1/p62, as a selective autophagy receptor, regulates multiple signaling pathways participating in the initiation and progression of tumors. Since metastasis is still a main cause for intrahepatic cholangiocarcinoma (ICC)-associated mortality, this study aimed to explore the mechanism of p62 promoting progression of ICC.Methods: Western blotting and immunohistochemical analysis were conducted to detect the expression level of protein p62 in ICC tissues. Subsequently, loss of function experiments was applied to define the role of p62 in the progression of ICC in vitro and in vivo. Mitochondrial function and mitophagy was evaluated by measuring oxygen consumption rates (OCR) and immunofluorescence detection respectively.Results: Here we identified expression of p62 was significantly upregulated in ICC specimens compared to normal tissue. And we further illustrated that p62 expression was positively correlated with lymph-node metastasis and poor prognosis. Loss of function assays revealed that p62 not only promoted ICC cells proliferation, migration and invasive capacity in vitro, but also induced lung metastasis in xenograft mouse model. Mechanistically, high expression of p62 induced epithelial-mesenchymal transition (EMT) with upregulation of Snail1, Vimentin and down-regulation of E-Cadherin. Moreover, OCR assays and immunofluorescence cell staining demonstrated that the autophagy-dependent function of p62 may play a vital role in maintaining mitochondrial function of ICC by mitophagy.Conclusions: These data provide new evidence and feasible mechanism that abundant p62 expression promote ICC progression, suggesting a promising therapeutic target for anti-metastatic strategies in ICC patients.


2022 ◽  
Vol 23 (2) ◽  
pp. 705
Author(s):  
Lavinia Raimondi ◽  
Alessia Gallo ◽  
Nicola Cuscino ◽  
Angela De Luca ◽  
Viviana Costa ◽  
...  

Osteosarcoma (OS) is the most common primary bone tumor mainly occurring in young adults and derived from primitive bone-forming mesenchyme. OS develops in an intricate tumor microenvironment (TME) where cellular function regulated by microRNAs (miRNAs) may affect communication between OS cells and the surrounding TME. Therefore, miRNAs are considered potential therapeutic targets in cancer and one of the goals of research is to accurately define a specific signature of a miRNAs, which could reflect the phenotype of a particular tumor, such as OS. Through NGS approach, we previously found a specific molecular profile of miRNAs in OS and discovered 8 novel miRNAs. Among these, we deepen our knowledge on the fifth candidate renamed now miR-CT3. MiR-CT3 expression was low in OS cells when compared with human primary osteoblasts and healthy bone. Through TargetScan, VEGF-A was predicted as a potential biological target of miR-CT3 and luciferase assay confirmed it. We showed that enforced expression of miR-CT3 in two OS cell lines, SAOS-2 and MG-63, reduced expression of VEGF-A mRNA and protein, inhibiting tumor angiogenesis. Enforced expression of miR-CT3 also reduced OS cell migration and invasion as confirmed by soft agar colony formation assay. Interestingly, we found that miR-CT3 behaves inducing the activation of p38 MAP kinase pathway and modulating the epithelial-mesenchymal transition (EMT) proteins, in particular reducing Vimentin expression. Overall, our study highlights the novel role of miR-CT3 in regulating tumor angiogenesis and progression in OS cells, linking also to the modulation of EMT proteins.


Sign in / Sign up

Export Citation Format

Share Document