scholarly journals The ‘W’ Prawn-Trawl with Emphasised Drag-Force Transfer to Its Centre Line to Reduce Overall System Drag

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0119622 ◽  
Author(s):  
Cheslav Balash ◽  
David Sterling ◽  
Jonathan Binns ◽  
Giles Thomas ◽  
Neil Bose
2020 ◽  
Vol 22 (4) ◽  
pp. 1047-1060
Author(s):  
S. Shadmani ◽  
S. M. Mousavi Nainiyan ◽  
R. Ghasemiasl ◽  
M. Mirzaei ◽  
S. G. Pouryoussefi

AbstractAhmed Body is a standard and simplified shape of a road vehicle that's rear part has an important role in flow structure and it's drag force. In this paper flow control around the Ahmed body with the rear slant angle of 25° studied by using the plasma actuator system situated in middle of the rear slant surface. Experiments conducted in a wind tunnel in two free stream velocities of U = 10m/s and U = 20m/s using steady and unsteady excitations. Pressure distribution and total drag force were measured and smoke flow visualization carried out in this study. The results showed that at U = 10m/s using plasma actuator suppress the separated flow over the rear slant slightly and be effective on pressure distribution. Also, total drag force reduces in steady and unsteady excitations for 3.65% and 2.44%, respectively. At U = 20m/s, using plasma actuator had no serious effect on the pressure distribution and total drag force.


2019 ◽  
Vol 16 (3) ◽  
pp. 276-289
Author(s):  
N. V. Savenkov ◽  
V. V. Ponyakin ◽  
S. A. Chekulaev ◽  
V. V. Butenko

Introduction. At present, stands with running drums are widely used for various types of tests. Power stands play a special role. Such stands take the mechanical power from the driving wheels of the car. This simulates the process of movement of the vehicle under operating conditions. Such equipment has various designs, principles of operation and performance. It is also used in tests that are different by purpose, development stages and types: research, control, certification, etc. Therefore, it is necessary in order to determine the traction-speed, fuel-efficient and environmental performance characteristics.Materials and methods. The paper provides the overview of the power stands with running drums, which are widespread on the domestic market. The authors carried out the analysis of the main structural solutions: schemes of force transfer between the wheel and the drum; types of loading devices; transmission layout schemes and features of the control and measuring complex. The authors also considered corresponding advantages and disadvantages, recommended spheres of application, demonstrated parameters and characteristics of the units’ workflow, presented components and equipment.Discussion and conclusions. The authors critically evaluate existing models of stands with running drums. Such information is useful for choosing serial models of stands and for developing technical tasks for designing or upgrading the equipment.


Author(s):  
S. M. FROLOV ◽  
◽  
S. V. Platonov ◽  
K. A. AVDEEV ◽  
V. S. AKSENOV ◽  
...  

To reduce the hydrodynamic drag force to the movement of the boat, an artificial gas cavity is organized under its bottom. Such a cavity partially insulates the bottom from direct contact with water and provides “gas lubrication” by means of forced supply of atmospheric air or exhaust gases from the main propulsion system. A proper longitudinal and transverse shaping of the gas cavity can significantly (by 20%-30%) reduce the hydrodynamic drag of the boat at low (less than 3%) consumption of the propulsion system power for gas supply.


2020 ◽  
Vol 51 (4) ◽  
pp. 535-539
Author(s):  
I. Aref’eva ◽  
A. Golubtsova ◽  
E. Gourgoulhon
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document