scholarly journals Homogenization Theory for the Prediction of Obstructed Solute Diffusivity in Macromolecular Solutions

PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0146093 ◽  
Author(s):  
Preston Donovan ◽  
Yasaman Chehreghanianzabi ◽  
Muruhan Rathinam ◽  
Silviya Petrova Zustiak
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zahra Arefinia ◽  
Dip Prakash Samajdar

AbstractNumerical-based simulations of plasmonic polymer solar cells (PSCs) incorporating a disordered array of non-uniform sized plasmonic nanoparticles (NPs) impose a prohibitively long-time and complex computational demand. To surmount this limitation, we present a novel semi-analytical modeling, which dramatically reduces computational time and resource consumption and yet is acceptably accurate. For this purpose, the optical modeling of active layer-incorporated plasmonic metal NPs, which is described by a homogenization theory based on a modified Maxwell–Garnett-Mie theory, is inputted in the electrical modeling based on the coupled equations of Poisson, continuity, and drift–diffusion. Besides, our modeling considers the effects of absorption in the non-active layers, interference induced by electrodes, and scattered light escaping from the PSC. The modeling results satisfactorily reproduce a series of experimental data for photovoltaic parameters of plasmonic PSCs, demonstrating the validity of our modeling approach. According to this, we implement the semi-analytical modeling to propose a new high-efficiency plasmonic PSC based on the PM6:Y6 PSC, having the highest reported power conversion efficiency (PCE) to date. The results show that the incorporation of plasmonic NPs into PM6:Y6 active layer leads to the PCE over 18%.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
P.A. Huidobro ◽  
M.G. Silveirinha ◽  
E. Galiffi ◽  
J.B. Pendry

2021 ◽  
Vol 10 (1) ◽  
pp. 187-200
Author(s):  
Xiaoyu Zhao ◽  
Guannan Wang ◽  
Qiang Chen ◽  
Libin Duan ◽  
Wenqiong Tu

Abstract A comprehensive study of the multiscale homogenized thermal conductivities and thermomechanical properties is conducted towards the filament groups of European Advanced Superconductors (EAS) strand via the recently proposed Multiphysics Locally Exact Homogenization Theory (LEHT). The filament groups have a distinctive two-level hierarchical microstructure with a repeating pattern perpendicular to the axial direction of Nb3Sn filament. The Nb3Sn filaments are processed in a very high temperature between 600 and 700°C, while its operation temperature is extremely low, −269°C. Meanwhile, Nb3Sn may experience high heat flux due to low resistivity of Nb3Sn in the normal state. The intrinsic hierarchical microstructure of Nb3Sn filament groups and Multiphysics loading conditions make LEHT an ideal candidate to conduct the homogenized thermal conductivities and thermomechanical analysis. First, a comparison with a finite element analysis is conducted to validate effectiveness of Multiphysics LEHT and good agreement is obtained for the homogenized thermal conductivities and mechanical and thermal expansion properties. Then, the Multiphysics LEHT is applied to systematically investigate the effects of volume fraction and temperature on homogenized thermal conductivities and thermomechanical properties of Nb3Sn filaments at the microscale and mesoscale. Those homogenized properties provide a full picture for researchers or engineers to understand the Nb3Sn homogenized properties and will further facilitate the material design and application.


2002 ◽  
Vol 740 ◽  
Author(s):  
Catalin R. Picu ◽  
Alireza Sarvestani ◽  
Murat S. Ozmusul

ABSTRACTA model polymeric material filled with spherical nanoparticles is considered in this work. Monte Carlo simulations are performed to determine the polymer chain conformations in the vicinity of the curved interface with the filler. Several discrete models of increasing complexity are considered: the athermal system with excluded volume interactions only, the system in which entropic and energetic interactions take place while the filler is a purely repulsive sphere, and the system in which both filler-polymer and polymer-polymer energetic interactions are accounted for. The total density, chain end density, chain segment preferential orientation and chain size and shape variation with the distance from the filler wall are determined. The structure is graded, with the thickness of the transition region being dependent on the property and scale considered. Hence, the polymer in the vicinity of the filler is represented in the continuum sense by a material with graded properties whose elasticity is determined based on the local structure. Homogenization theory is the used to obtain the overall composite moduli. The filler size effect on the composite elasticity is evaluated.


2001 ◽  
Vol 105 (14) ◽  
pp. 3667-3672 ◽  
Author(s):  
Ryo Yoshida ◽  
Gaku Otoshi ◽  
Tomohiko Yamaguchi ◽  
Etsuo Kokufuta

2010 ◽  
Author(s):  
Lars-Erik Persson ◽  
Natasha Samko ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras

2011 ◽  
Vol 9 (1) ◽  
pp. 180-204 ◽  
Author(s):  
Zhaoqin Huang ◽  
Jun Yao ◽  
Yajun Li ◽  
Chenchen Wang ◽  
Xinrui Lv

AbstractA numerical procedure for the evaluation of equivalent permeability tensor for fractured vuggy porous media is presented. At first we proposed a new conceptual model, i.e., discrete fracture-vug network model, to model the realistic fluid flow in fractured vuggy porous medium on fine scale. This new model consists of three systems: rock matrix system, fractures system, and vugs system. The fractures and vugs are embedded in porous rock, and the isolated vugs could be connected via discrete fracture network. The flow in porous rock and fractures follows Darcy’s law, and the vugs system is free fluid region. Based on two-scale homogenization theory, we obtained an equivalent macroscopic Darcy’s law on coarse scale from fine-scale discrete fracture-vug network model. A finite element numerical formulation for homogenization equations is developed. The method is verified through application to a periodic model problem and then is applied to the calculation of equivalent permeability tensor of porous media with complex fracture-vug networks. The applicability and validity of the method for these more general fractured vuggy systems are assessed through a simple test of the coarse-scale model.


Sign in / Sign up

Export Citation Format

Share Document