scholarly journals Evaluation of Constant Thickness Cartilage Models vs. Patient Specific Cartilage Models for an Optimized Computer-Assisted Planning of Periacetabular Osteotomy

PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0146452 ◽  
Author(s):  
Li Liu ◽  
Timo Michael Ecker ◽  
Steffen Schumann ◽  
Klaus-Arno Siebenrock ◽  
Guoyan Zheng
Author(s):  
Peter Brumat ◽  
Rene Mihalič ◽  
Črt Benulič ◽  
Anže Kristan ◽  
Rihard Trebše

ABSTRACT Periacetabular osteotomy (PAO) for pelvic fracture sequelae presents a challenge in hip preservation surgery due to a combination of complex conditions involving post-traumatic altered anatomy and technically demanding procedure, with high surgical risk involved. To address these challenging conditions and evade potential devastating complications, a combination of patient-specific template (PST) and electromagnetic navigation (EMN) guidance can be used to increase the safety of the procedure and the accuracy of the acetabular reorientation. Herein we report our experience utilizing a combined PST- and EMN-assisted bilateral PAO for staged correction of bilateral severe, injury-induced hip dysplasia. The presented case report describes a unique method of successful surgical treatment of severe, bilateral injury-induced hip dysplasia with combined 3-D printing technology (PST) and intra-operative electromagnetic computer-assisted navigation (EMN) aided technically demanding surgical procedure (PAO), which emphasizes the benefits of PST and EMN use in hip preservation surgery in patients with complex pathoanatomic circumstances.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
P. Fürnstahl ◽  
F. A. Casari ◽  
J. Ackermann ◽  
M. Marcon ◽  
M. Leunig ◽  
...  

Abstract Background Legg–Calvé–Perthes (LCP) is a common orthopedic childhood disease that causes a deformity of the femoral head and to an adaptive deformity of the acetabulum. The altered joint biomechanics can result in early joint degeneration that requires total hip arthroplasty. In 2002, Ganz et al. introduced the femoral head reduction osteotomy (FHRO) as a direct joint-preserving treatment. The procedure remains one of the most challenging in hip surgery. Computer-based 3D preoperative planning and patient-specific navigation instruments have been successfully used to reduce technical complexity in other anatomies. The purpose of this study was to report the first results in the treatment of 6 patients to investigate whether our approach is feasible and safe. Methods In this retrospective pilot study, 6 LCP patients were treated with FHRO in multiple centers between May 2017 and June 2019. Based on patient-specific 3D-models of the hips, the surgeries were simulated in a step-wise fashion. Patient-specific instruments tailored for FHRO were designed, 3D-printed and used in the surgeries for navigating the osteotomies. The results were assessed radiographically [diameter index, sphericity index, Stulberg classification, extrusion index, LCE-, Tönnis-, CCD-angle and Shenton line] and the time and costs were recorded. Radiologic values were tested for normal distribution using the Shapiro–Wilk test and for significance using Wilcoxon signed-rank test. Results The sphericity index improved postoperatively by 20% (p = 0.028). The postoperative diameter of the femoral head differed by only 1.8% (p = 0.043) from the contralateral side and Stulberg grading improved from poor coxarthrosis outcome to good outcome (p = 0.026). All patients underwent acetabular reorientation by periacetabular osteotomy. The average time (in minutes) for preliminary analysis, computer simulation and patient-specific instrument design was 63 (±48), 156 (±64) and 105 (±68.5), respectively. Conclusion The clinical feasibility of our approach to FHRO has been demonstrated. The results showed significant improvement compared to the preoperative situation. All operations were performed by experienced surgeons; nevertheless, three complications occurred, showing that FHRO remains one of the most complex hip surgeries even with computer assistance. However, none of the complications were directly related to the simulation or the navigation technique.


2020 ◽  
Author(s):  
Philipp Fürnstahl ◽  
Fabio A. Casari ◽  
Joëlle Ackermann ◽  
Magda Marcon ◽  
Michael Leunig ◽  
...  

Abstract Background Legg–Calvé–Perthes (LCP) is a common orthopedic childhood disease that causes a deformity of the femoral head and to an adaptive deformity of the acetabulum. The altered joint biomechanics can result in early joint degeneration that requires total hip arthroplasty. In 2002, Ganz et al. introduced the femoral head reduction osteotomy (FHRO) as a direct joint-preserving treatment. The procedure remains one of the most challenging in hip surgery. Computer-based 3D preoperative planning and patient-specific navigation instruments have been successfully used to reduce technical complexity in other anatomies. The purpose of this study was to report the first results in the treatment of 6 patients to investigate whether our approach is feasible and safe.Methods In this retrospective pilot study, 6 LCP patients were treated with FHRO in multiple centers between May 2017 and June 2019. Based on patient-specific 3D-models of the hips, the surgeries were simulated in a step-wise fashion. Patient-specific instruments tailored for FHRO were designed, 3D-printed and used in the surgeries for navigating the osteotomies. The results were assessed radiographically [diameter index, sphericity index, Stulberg classification, extrusion index, LCE-, Tönnis-, CCD-angle and Shenton line] and the time and costs were recorded. Radiologic values were tested for normal distribution using the Shapiro–Wilk test and for significance using Wilcoxon signed-rank test.Results The sphericity index improved postoperatively by 20% (p = 0.028). The postoperative diameter of the femoral head differed by only 1.8% (p = 0.043) from the contralateral side and Stulberg grading improved from poor coxarthrosis outcome to good outcome (p = 0.026). All patients underwent acetabular reorientation by periacetabular osteotomy. The average time (in minutes) for preliminary analysis, computer simulation and patient-specific instrument design was 63 (±48), 156 (±64) and 105 (±68.5), respectively.Conclusion The clinical feasibility of our approach to FHRO has been demonstrated. The results showed significant improvement compared to the preoperative situation. All operations were performed by experienced surgeons; nevertheless, three complications occurred, showing that FHRO remains one of the most complex hip surgeries even with computer assistance. However, none of the complications were directly related to the simulation or the navigation technique.


2020 ◽  
Author(s):  
Philipp Fürnstahl ◽  
Fabio A. Casari ◽  
Joëlle Ackermann ◽  
Magda Marcon ◽  
Michael Leunig ◽  
...  

Abstract Background Legg–Calvé–Perthes (LCP) is a common orthopedic childhood disease that causes a deformity of the femoral head and to an adaptive deformity of the acetabulum. The altered joint biomechanics can result in early joint degeneration that requires total hip arthroplasty. In 2002, Ganz et al. introduced the femoral head reduction osteotomy (FHRO) as a direct joint-preserving treatment. The procedure remains one of the most challenging in hip surgery. Computer-based 3D preoperative planning and patient-specific navigation instruments have been successfully used to reduce technical complexity in other anatomies. The purpose of this study was to report the first results in the treatment of 6 patients to investigate whether our approach is feasible and safe.Methods In this retrospective pilot study, 6 LCP patients were treated with FHRO in multiple centers between May 2017 and June 2019. Based on patient-specific 3D-models of the hips, the surgeries were simulated in a step-wise fashion. Patient-specific instruments tailored for FHRO were designed, 3D-printed and used in the surgeries for navigating the osteotomies. The results were assessed radiographically [diameter index, sphericity index, Stulberg classification, extrusion index, LCE-, Tönnis-, CCD-angle and Shenton line] and the time and costs were recorded. Radiologic values were tested for normal distribution using the Shapiro–Wilk test and for significance using Wilcoxon signed-rank test.Results The sphericity index improved postoperatively by 20% (p = 0.028). The postoperative diameter of the femoral head differed by only 1.8% (p = 0.043) from the contralateral side and Stulberg grading improved from poor coxarthrosis outcome to good outcome (p = 0.026). All patients underwent acetabular reorientation by periacetabular osteotomy. The average time (in minutes) for preliminary analysis, computer simulation and patient-specific instrument design was 63 (±48), 156 (±64) and 105 (±68.5), respectively.Conclusion The clinical feasibility of our approach to FHRO has been demonstrated. The results showed significant improvement compared to the preoperative situation. All operations were performed by experienced surgeons; nevertheless, three complications occurred, showing that FHRO remains one of the most complex hip surgeries even with computer assistance. However, none of the complications were directly related to the simulation or the navigation technique.


2021 ◽  
Author(s):  
Timothy J Yee ◽  
Michael J Strong ◽  
Matthew S Willsey ◽  
Mark E Oppenlander

Abstract Nonunion of a type II odontoid fracture after the placement of an anterior odontoid screw can occur despite careful patient selection. Countervailing factors to successful fusion include the vascular watershed zone between the odontoid process and body of C2 as well as the relatively low surface area available for fusion. Patient-specific factors include osteoporosis, advanced age, and poor fracture fragment apposition. Cervical 1-2 posterior instrumented fusion is indicated for symptomatic nonunion. The technique leverages the larger posterolateral surface area for fusion and does not rely on bony growth in a watershed zone. Although loss of up to half of cervical rotation is expected after C1-2 arthrodesis, this may be better tolerated in the elderly, who may have lower physical demands than younger patients. In this video, we discuss the case of a 75-yr-old woman presenting with intractable mechanical cervicalgia 7 mo after sustaining a type II odontoid fracture and undergoing anterior odontoid screw placement at an outside institution. Cervical radiography and computed tomography exhibited haloing around the screw and nonunion across the fracture. We demonstrate C1-2 posterior instrumented fusion with Goel-Harms technique (C1 lateral mass and C2 pedicle screws), utilizing computer-assisted navigation, and modified Sonntag technique with rib strut autograft.  Posterior C1-2-instrumented fusion with rib strut autograft is an essential technique in the spine surgeon's armamentarium for the management of C1-2 instability, which can be a sequela of type II dens fracture. Detailed video demonstration has not been published to date.  Appropriate patient consent was obtained.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niksa Mohammadi Bagheri ◽  
Mahmoud Kadkhodaei ◽  
Shiva Pirhadi ◽  
Peiman Mosaddegh

AbstractThe implementation of intracorneal ring segments (ICRS) is one of the successfully applied refractive operations for the treatment of keratoconus (kc) progression. The different selection of ICRS types along with the surgical implementation techniques can significantly affect surgical outcomes. Thus, this study aimed to investigate the influence of ICRS implementation techniques and design on the postoperative biomechanical state and keratometry results. The clinical data of three patients with different stages and patterns of keratoconus were assessed to develop a three-dimensional (3D) patient-specific finite-element model (FEM) of the keratoconic cornea. For each patient, the exact surgery procedure definitions were interpreted in the step-by-step FEM. Then, seven surgical scenarios, including different ICRS designs (complete and incomplete segment), with two surgical implementation methods (tunnel incision and lamellar pocket cut), were simulated. The pre- and postoperative predicted results of FEM were validated with the corresponding clinical data. For the pre- and postoperative results, the average error of 0.4% and 3.7% for the mean keratometry value ($$\text {K}_{\text{mean}}$$ K mean ) were predicted. Furthermore, the difference in induced flattening effects was negligible for three ICRS types (KeraRing segment with arc-length of 355, 320, and two separate 160) of equal thickness. In contrast, the single and double progressive thickness of KeraRing 160 caused a significantly lower flattening effect compared to the same type with constant thickness. The observations indicated that the greater the segment thickness and arc-length, the lower the induced mean keratometry values. While the application of the tunnel incision method resulted in a lower $$\text {K}_{\text{mean}}$$ K mean value for moderate and advanced KC, the induced maximum Von Mises stress on the postoperative cornea exceeded the induced maximum stress on the cornea more than two to five times compared to the pocket incision and the preoperative state of the cornea. In particular, an asymmetric regional Von Mises stress on the corneal surface was generated with a progressive ICRS thickness. These findings could be an early biomechanical sign for a later corneal instability and ICRS migration. The developed methodology provided a platform to personalize ICRS refractive surgery with regard to the patient’s keratoconus stage in order to facilitate the efficiency and biomechanical stability of the surgery.


Author(s):  
Claudia Wittkowske ◽  
Stefan Raith ◽  
Maximilian Eder ◽  
Alexander Volf ◽  
Jan S. Kirschke ◽  
...  

AbstractA semi-automated workflow for evaluation of diaphyseal fracture treatment of the femur has been developed and implemented. The aim was to investigate the influence of locking compression plating with diverse fracture-specific screw configurations on interfragmentary movements (IFMs) with the use of finite element (FE) analysis. Computed tomography (CT) data of a 22-year-old non-osteoporotic female were used for patient specific modeling of the inhomogeneous material properties of bone. Hounsfield units (HU) were exported and assigned to elements of a FE mesh and converted to mechanical properties such as the Young’s modulus followed by a linear FE analysis performed in a semi-automated fashion. IFM on the near and far cortex was evaluated. A positive correlation between bridging length and IFM was observed. Optimal healing conditions with IFMs between 0.5 mm and 1 mm were found in a constellation with a medium bridging length of 80 mm with three unoccupied screw holes around the fracture gap. Usage of monocortical screws instead of bicortical ones had negligible influence on the evaluated parameters when modeling non-osteoporotic bone. Minimal user input, automation of the procedure and an efficient computation time ensured quick delivery of results which will be essential in a future clinical application.


Sign in / Sign up

Export Citation Format

Share Document