scholarly journals The Expression Pattern of the Pre-B Cell Receptor Components Correlates with Cellular Stage and Clinical Outcome in Acute Lymphoblastic Leukemia

PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0162638 ◽  
Author(s):  
Dongfeng Chen ◽  
Junxiong Zheng ◽  
Natalija Gerasimcik ◽  
Kristina Lagerstedt ◽  
Helene Sjögren ◽  
...  
2009 ◽  
Vol 206 (8) ◽  
pp. 1739-1753 ◽  
Author(s):  
Daniel Trageser ◽  
Ilaria Iacobucci ◽  
Rahul Nahar ◽  
Cihangir Duy ◽  
Gregor von Levetzow ◽  
...  

B cell lineage acute lymphoblastic leukemia (ALL) arises in virtually all cases from B cell precursors that are arrested at pre–B cell receptor–dependent stages. The Philadelphia chromosome–positive (Ph+) subtype of ALL accounts for 25–30% of cases of adult ALL, has the most unfavorable clinical outcome among all ALL subtypes and is defined by the oncogenic BCR-ABL1 kinase and deletions of the IKAROS gene in >80% of cases. Here, we demonstrate that the pre–B cell receptor functions as a tumor suppressor upstream of IKAROS through induction of cell cycle arrest in Ph+ ALL cells. Pre–B cell receptor–mediated cell cycle arrest in Ph+ ALL cells critically depends on IKAROS function, and is reversed by coexpression of the dominant-negative IKAROS splice variant IK6. IKAROS also promotes tumor suppression through cooperation with downstream molecules of the pre–B cell receptor signaling pathway, even if expression of the pre–B cell receptor itself is compromised. In this case, IKAROS redirects oncogenic BCR-ABL1 tyrosine kinase signaling from SRC kinase-activation to SLP65, which functions as a critical tumor suppressor downstream of the pre–B cell receptor. These findings provide a rationale for the surprisingly high frequency of IKAROS deletions in Ph+ ALL and identify IKAROS-mediated cell cycle exit as the endpoint of an emerging pathway of pre–B cell receptor–mediated tumor suppression.


Blood ◽  
2015 ◽  
Vol 125 (24) ◽  
pp. 3688-3693 ◽  
Author(s):  
Markus Müschen

Abstract Inhibitors of B-cell receptor (BCR) and pre-BCR signaling were successfully introduced into patient care for various subtypes of mature B-cell lymphoma (eg, ibrutinib, idelalisib). Acute lymphoblastic leukemia (ALL) typically originates from pre-B cells that critically depend on survival signals emanating from a functional pre-BCR. However, whether patients with ALL benefit from treatment with (pre-) BCR inhibitors has not been explored. Recent data suggest that the pre-BCR functions as tumor suppressor in the majority of cases of human ALL. However, a distinct subset of human ALL is selectively sensitive to pre-BCR antagonists.


Cancer Cell ◽  
2012 ◽  
Vol 22 (5) ◽  
pp. 656-667 ◽  
Author(s):  
Vincent T. Bicocca ◽  
Bill H. Chang ◽  
Behzad Kharabi Masouleh ◽  
Markus Muschen ◽  
Marc M. Loriaux ◽  
...  

2014 ◽  
Vol 263 (1) ◽  
pp. 192-209 ◽  
Author(s):  
Maike Buchner ◽  
Srividya Swaminathan ◽  
Zhengshan Chen ◽  
Markus Müschen

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4259-4259
Author(s):  
Hanna Makuch-Lasica ◽  
Miroslaw Majewski ◽  
Grazyna Nowak ◽  
Iwona Kania ◽  
Monika Lewandowska ◽  
...  

Abstract B-cell acute lymphoblastic leukemia (B-ALL) results from clonal expansion of B-lymphocytes derived at different stage of differentiation. Immunoglobulin (Ig) heavy chain genes (IGH), light chain kappa (IGK) and lambda (IGL) genes rearrange during early B-lymphocyte differentiation. T-cell receptor (TCR) genes are considered to rearrange exclusively in normal T lymphocytes, but malignant B lymphoblasts often contain crosslineage rearranged TCR genes. The clonal leukemic cell population, carrying identical copies of rearranged Ig and/or TCR genes, can be identified above 95% of B-ALL patients. In our study Ig/TCR genes rearrangements were detected by multiplex PCR with heteroduplex analysis according to BIOMED-2 protocol. DNA was isolated by column method from mononuclear cells isolated from the peripheral blood/bone marrow samples obtained at initial diagnosis from 36 B-ALL patients. Monoclonal rearrangements of Ig genes were detected in 100% (36/36) of patients. The most frequent rearrangements were observed in IGH genes (94%), including complete IGHV-IGHJ in 83% (30/36) and incomplete IGHD-IGHJ in 22% (8/36) of patients. Among complete IGH rearrangements 2 biallelic rearrangements in IGHV1-7 and IGHJ genes (FR3) were found. Ig light chain genes rearrangements were identified in 26 patients (72%) (including 64% of IGKV-IGKJ, 47% IGKV/intron-Kde, and 22% IGLV-IGLJ) what indicates active receptor editing occurring during B lymphoblasts leukemogenesis. Crosslineage TCR genes rearrangements were found in 97% (35/36) of patients. TCR beta genes rearrangements were detected in 47% (17/36) of patients (complete TRBV-TRBJ in 25% (9/36), TRBD-TRBJ in 6/36 patients - 17%). TRGV-TRGV in 58% (21/36), TRDV-TRDJ in 58% (21/36); 17 monoallelic and 4 biallelic were found. The inactivation of potentially functional IGKV-IGKJ by secondary rearrangements indicates active receptor editing. Our data describe IGK and IGL genes rearrangements incidence, present allelic exclusion and active receptor editing in B-ALL patients. B-ALL lymphoblast undergoes rearrangement on the same IGK allele before IGL genes rearrangement occur. The data may suggest the possible of antigens in B-ALL immunopathogenesis. The results indicate also rearranged IGK, IGL and TCR genes as stable molecular marker for monitoring MRD in B-ALL.


Sign in / Sign up

Export Citation Format

Share Document