scholarly journals Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue-derived mesenchymal stem cells

PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0174303 ◽  
Author(s):  
Alfonso Eirin ◽  
Xiang-Yang Zhu ◽  
Amrutesh S. Puranik ◽  
John R. Woollard ◽  
Hui Tang ◽  
...  
2021 ◽  
Vol 22 (3) ◽  
pp. 1375
Author(s):  
María Carmen Carceller ◽  
María Isabel Guillén ◽  
María Luisa Gil ◽  
María José Alcaraz

Adipose tissue represents an abundant source of mesenchymal stem cells (MSC) for therapeutic purposes. Previous studies have demonstrated the anti-inflammatory potential of adipose tissue-derived MSC (ASC). Extracellular vesicles (EV) present in the conditioned medium (CM) have been shown to mediate the cytoprotective effects of human ASC secretome. Nevertheless, the role of EV in the anti-inflammatory effects of mouse-derived ASC is not known. The current study has investigated the influence of mouse-derived ASC CM and its fractions on the response of mouse-derived peritoneal macrophages against lipopolysaccharide (LPS). CM and its soluble fraction reduced the release of pro-inflammatory cytokines, adenosine triphosphate and nitric oxide in stimulated cells. They also enhanced the migration of neutrophils or monocytes, in the absence or presence of LPS, respectively, which is likely related to the presence of chemokines, and reduced the phagocytic response. The anti-inflammatory effect of CM may be dependent on the regulation of toll-like receptor 4 expression and nuclear factor-κB activation. Our results demonstrate the anti-inflammatory effects of mouse-derived ASC secretome in mouse-derived peritoneal macrophages stimulated with LPS and show that they are not mediated by EV.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Marta Garcia-Contreras ◽  
Avnesh S. Thakor

AbstractNeurodegenerative diseases (NDs), such as Alzheimer’s disease (AD), are driven by neuroinflammation triggered by activated microglial cells; hence, the phenotypic regulation of these cells is an appealing target for intervention. Human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) may be a potential therapeutic candidate to treat NDs given their immunomodulatory properties. Evidence suggests that the mechanism of action of hAD-MSCs is through their secretome, which includes secreted factors such as cytokines, chemokines, or growth factors as well as extracellular vesicles (EVs). Recently, EVs have emerged as important mediators in cell communication given, they can transfer proteins, lipids, and RNA species (i.e., miRNA, mRNA, and tRNAs) to modulate recipient cells. However, the therapeutic potential of hAD-MSCs and their secreted EVs has not been fully elucidated with respect to human microglia. In this study, we determined the therapeutic potential of different hAD-MSCs doses (200,000, 100,000, and 50,000 cells) or their secreted EVs (50, 20, or 10 µg/ml), on human microglial cells (HMC3) that were activated by lipopolysaccharides (LPS). Upregulation of inducible nitric oxide synthase (iNOS), an activation marker of HMC3 cells, was prevented when they were cocultured with hAD-MSCs and EVs. Moreover, hAD-MSCs inhibited the secretion of proinflammatory factors, such as IL-6, IL-8, and MCP-1, while their secreted EVs promoted the expression of anti-inflammatory mediators such as IL-10 or TIMP-1 in activated microglia. The present data therefore support a role for hAD-MSCs and their secreted EVs, as potential therapeutic candidates for the treatment of NDs.


2018 ◽  
Vol 47 (1) ◽  
pp. 11-25 ◽  
Author(s):  
Miguel Tofiño-Vian ◽  
Maria Isabel Guillén ◽  
María Dolores Pérez del Caz ◽  
Antonio Silvestre ◽  
María José Alcaraz

Background/Aims: Chronic inflammation contributes to cartilage degeneration during the progression of osteoarthritis (OA). Adipose tissue-derived mesenchymal stem cells (AD-MSC) show great potential to treat inflammatory and degradative processes in OA and have demonstrated paracrine effects in chondrocytes. In the present work, we have isolated and characterized the extracellular vesicles from human AD-MSC to investigate their role in the chondroprotective actions of these cells. Methods: AD-MSC were isolated by collagenase treatment from adipose tissue from healthy individuals subjected to abdominal lipectomy surgery. Microvesicles and exosomes were obtained from conditioned medium by filtration and differential centrifugation. Chondrocytes from OA patients were used in primary culture and stimulated with 10 ng/ml interleukin(IL)-1β in the presence or absence of AD-MSC microvesicles, exosomes or conditioned medium. Protein expression was investigated by ELISA and immunofluorescence, transcription factor-DNA binding by ELISA, gene expression by real-time PCR, prostaglandin E2 (PGE2) by radioimmunoassay, and matrix metalloproteinase (MMP) activity and nitric oxide (NO) production by fluorometry. Results: In OA chondrocytes stimulated with IL-1β, microvesicles and exosomes reduced the production of inflammatory mediators tumor necrosis factor-α, IL-6, PGE2 and NO. The downregulation of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 would lead to the decreased PGE2 production while the effect on NO could depend on the reduction of inducible nitric oxide synthase expression. Treatment of OA chondrocytes with extracellular vesicles also decreased the release of MMP activity and MMP-13 expression whereas the production of the anti-inflammatory cytokine IL-10 and the expression of collagen II were significantly enhanced. The reduction of inflammatory and catabolic mediators could be the consequence of a lower activation of nuclear factor-κB and activator protein-1. The upregulation of annexin A1 specially in MV may contribute to the anti-inflammatory and chondroprotective effects of AD-MSC. Conclusions: Our data support the interest of AD-MSC extracellular vesicles to develop new therapeutic approaches in joint conditions.


2014 ◽  
Vol 5 ◽  
Author(s):  
Marcella Franquesa ◽  
Martin J. Hoogduijn ◽  
Elia Ripoll ◽  
Franka Luk ◽  
Mahdi Salih ◽  
...  

Gene ◽  
2014 ◽  
Vol 551 (1) ◽  
pp. 55-64 ◽  
Author(s):  
Alfonso Eirin ◽  
Scott M. Riester ◽  
Xiang-Yang Zhu ◽  
Hui Tang ◽  
Jared M. Evans ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document