scholarly journals Mutations that impair Eyes absent tyrosine phosphatase activity in vitro reduce robustness of retinal determination gene network output in Drosophila

PLoS ONE ◽  
2017 ◽  
Vol 12 (11) ◽  
pp. e0187546 ◽  
Author(s):  
Trevor L. Davis ◽  
Charlene S. L. Hoi ◽  
Ilaria Rebay
2018 ◽  
Vol 17 (8) ◽  
pp. 1659-1669 ◽  
Author(s):  
Yuhua Wang ◽  
Ram Naresh Pandey ◽  
Stephen Riffle ◽  
Hemabindu Chintala ◽  
Kathryn A. Wikenheiser-Brokamp ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuhua Wang ◽  
Ram Naresh Pandey ◽  
Allen J. York ◽  
Jaya Mallela ◽  
William C. Nichols ◽  
...  

Abstract In pulmonary hypertension vascular remodeling leads to narrowing of distal pulmonary arterioles and increased pulmonary vascular resistance. Vascular remodeling is promoted by the survival and proliferation of pulmonary arterial vascular cells in a DNA-damaging, hostile microenvironment. Here we report that levels of Eyes Absent 3 (EYA3) are elevated in pulmonary arterial smooth muscle cells from patients with pulmonary arterial hypertension and that EYA3 tyrosine phosphatase activity promotes the survival of these cells under DNA-damaging conditions. Transgenic mice harboring an inactivating mutation in the EYA3 tyrosine phosphatase domain are significantly protected from vascular remodeling. Pharmacological inhibition of the EYA3 tyrosine phosphatase activity substantially reverses vascular remodeling in a rat model of angio-obliterative pulmonary hypertension. Together these observations establish EYA3 as a disease-modifying target whose function in the pathophysiology of pulmonary arterial hypertension can be targeted by available inhibitors.


2002 ◽  
Vol 162 (4) ◽  
pp. 379-384 ◽  
Author(s):  
Xuechu Zhen ◽  
Claudio Torres ◽  
Eitan Friedman

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 635-635
Author(s):  
Benjamin S. Braun ◽  
Joehleen A. Archard ◽  
Wentian Yang ◽  
Gordon Chan ◽  
Benjamin G. Neel ◽  
...  

Abstract Activating mutations in PTPN11, which encodes the tyrosine phosphatase SHP-2, comprise the most frequent genetic lesion in juvenile myelomonocytic leukemia (JMML). Other etiologies of JMML include activating mutations in NRAS or KRAS2 and inactivation of the tumor suppressor NF1. These and other observations imply that PTPN11 functions in a common genetic pathway with RAS and NF1. Ras proteins are signal switch molecules that respond to extracellular stimuli by cycling between inactive GDP-bound and active GTP-bound conformations. Oncogenic alleles encode proteins that preferentially accumulate in the GTP-bound form. While NF1 encodes a GTPase activating protein for Ras that directly modulates Ras-GTP levels, the biochemical relationship between SHP-2 phosphatase activity and Ras signaling remains unclear. Most mammalian systems place SHP-2 upstream of Ras activation, but the mechanism is not known. Studies of Ptpn11 mutant embryos and of chimeric mice have shown that SHP-2 plays an essential role in hematopoietic development. We tested the hypothesis that the essential function of SHP-2 in primary hematopoietic cells is to activate Ras. To do this, we determined if Ras activation by expression of an oncogenic Kras2 allele could eliminate the requirement for SHP-2. We used conditional alleles of Kras2 (LSL-KrasG12D) and Ptpn11 (Ptpn11flox/flox) coupled with the inducible Mx1-Cre transgene. Juvenile mice were injected with polyI:polyC, resulting in expression of K-RasG12D and inactivation of Ptpn11. Although these mice uniformly developed fatal MPD similar to what we previously reported in Mx1-Cre, LSL-KrasG12D mice (Braun et al., PNAS 101(2):597–602), myeloid progenitors invariably retained an intact Ptpn11 allele despite uniform activation of the conditional KrasG12D allele. These data suggested that there was strong selective pressure to retain a functional Ptpn11 allele despite oncogenic K-Ras expression. To test this hypothesis directly, we enumerated myeloid progenitor colonies in methylcellulose medium immediately after inactivating Ptpn11 and activating KrasG12D via retroviral transduction. This confirmed a strong dependence on SHP-2 for formation of myeloid colonies either in the presence or absence of KrasG12D. Infecting Ptpn11flox/flox, LSL-KrasG12D cells with a Ptpn11-IRES-Cre virus fully restored the aberrant growth phenotype of KrasG12D mutant cells. Remarkably, alleles encoding phosphatase-deficient SHP-2 proteins also rescued CFU-GM growth. These data indicate that SHP-2 is required for growth of both normal and neoplastic myeloid progenitors in vivo and in vitro. Our data support a model in which SHP-2 has essential hematopoietic functions that are independent of Ras activation and do not require SHP-2 phosphatase activity. The presence of protein-protein interaction domains in SHP-2 suggests that it may have a noncatalytic adaptor function. Because transformation by leukemogenic Ptpn11 alleles requires catalytic activity, our data imply that inhibition of SHP-2 catalysis will selectively target neoplastic hematopoietic progenitors.


2021 ◽  
Vol 218 (11) ◽  
Author(s):  
Guoxin Zhang ◽  
Zhen Dong ◽  
Ryan C. Gimple ◽  
Arthur Wolin ◽  
Qiulian Wu ◽  
...  

Glioblastoma ranks among the most lethal of primary brain malignancies, with glioblastoma stem cells (GSCs) at the apex of tumor cellular hierarchies. Here, to discover novel therapeutic GSC targets, we interrogated gene expression profiles from GSCs, differentiated glioblastoma cells (DGCs), and neural stem cells (NSCs), revealing EYA2 as preferentially expressed by GSCs. Targeting EYA2 impaired GSC maintenance and induced cell cycle arrest, apoptosis, and loss of self-renewal. EYA2 displayed novel localization to centrosomes in GSCs, and EYA2 tyrosine (Tyr) phosphatase activity was essential for proper mitotic spindle assembly and survival of GSCs. Inhibition of the EYA2 Tyr phosphatase activity, via genetic or pharmacological means, mimicked EYA2 loss in GSCs in vitro and extended the survival of tumor-bearing mice. Supporting the clinical relevance of these findings, EYA2 portends poor patient prognosis in glioblastoma. Collectively, our data indicate that EYA2 phosphatase function plays selective critical roles in the growth and survival of GSCs, potentially offering a high therapeutic index for EYA2 inhibitors.


PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e58818 ◽  
Author(s):  
Meng Jin ◽  
Barbara Jusiak ◽  
Zengliang Bai ◽  
Graeme Mardon

2013 ◽  
Vol 12 (9) ◽  
pp. 1179-1191 ◽  
Author(s):  
Sebastian Fernandez-Pol ◽  
Zdenek Slouka ◽  
Souvik Bhattacharjee ◽  
Yana Fedotova ◽  
Stefan Freed ◽  
...  

ABSTRACT Eukaryotic parasites of the genus Plasmodium cause malaria by invading and developing within host erythrocytes. Here, we demonstrate that PfShelph2, a gene product of Plasmodium falciparum that belongs to the Shewanella -like phosphatase (Shelph) subfamily, selectively hydrolyzes phosphotyrosine, as shown for other previously studied Shelph family members. In the extracellular merozoite stage, PfShelph2 localizes to vesicles that appear to be distinct from those of rhoptry, dense granule, or microneme organelles. During invasion, PfShelph2 is released from these vesicles and exported to the host erythrocyte. In vitro , PfShelph2 shows tyrosine phosphatase activity against the host erythrocyte protein Band 3, which is the most abundant tyrosine-phosphorylated species of the erythrocyte. During P. falciparum invasion, Band 3 undergoes dynamic and rapid clearance from the invasion junction within 1 to 2 s of parasite attachment to the erythrocyte. Release of Pfshelph2 occurs after clearance of Band 3 from the parasite-host cell interface and when the parasite is nearly or completely enclosed in the nascent vacuole. We propose a model in which the phosphatase modifies Band 3 in time to restore its interaction with the cytoskeleton and thus reestablishes the erythrocyte cytoskeletal network at the end of the invasion process.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Young-Jung Jung ◽  
Daniel P. Miller ◽  
John D. Perpich ◽  
Zackary R. Fitzsimonds ◽  
Daonan Shen ◽  
...  

ABSTRACT Protein-tyrosine phosphorylation in bacteria plays a significant role in multiple cellular functions, including those related to community development and virulence. Metal-dependent protein tyrosine phosphatases that belong to the polymerase and histindinol phosphatase (PHP) family are widespread in Gram-positive bacteria. Here, we show that Porphyromonas gingivalis, a Gram-negative periodontal pathogen, expresses a PHP protein, Php1, with divalent metal ion-dependent tyrosine phosphatase activity. Php1 tyrosine phosphatase activity was attenuated by mutation of conserved histidine residues that are important for the coordination of metal ions and by mutation of a conserved arginine residue, a key residue for catalysis in other bacterial PHPs. The php1 gene is located immediately downstream of the gene encoding the bacterial tyrosine (BY) kinase Ptk1, which was a substrate for Php1 in vitro. Php1 rapidly caused the conversion of Ptk1 to a state of low tyrosine phosphorylation in the absence of discernible intermediate phosphoforms. Active Php1 was required for P. gingivalis exopolysaccharide production and for community development with the antecedent oral biofilm constituent Streptococcus gordonii under nutrient-depleted conditions. In contrast, the absence of Php1 had no effect on the ability of P. gingivalis to form monospecies biofilms. In vitro, Php1 enzymatic activity was resistant to the effects of the streptococcal secreted metabolites pABA and H2O2, which inhibited Ltp1, an enzyme in the low-molecular-weight (LMW) phosphotyrosine phosphatase family. Ptk1 reciprocally phosphorylated Php1 on tyrosine residues 159 and 161, which independently impacted phosphatase activity. Loss of Php1 rendered P. gingivalis nonvirulent in an animal model of periodontal disease. Collectively, these results demonstrate that P. gingivalis possesses active PHP and LMW tyrosine phosphatases, a unique configuration in Gram-negatives which may allow P. gingivalis to maintain phosphorylation/dephosphorylation homeostasis in multispecies communities. Moreover, Php1 contributes to the pathogenic potential of the organism. IMPORTANCE Periodontal diseases are among the most common infections of humans and are also associated with systemic inflammatory conditions. Colonization and pathogenicity of P. gingivalis are regulated by signal transduction pathways based on protein tyrosine phosphorylation and dephosphorylation. Here, we identify and characterize a novel component of the tyrosine (de)phosphorylation axis: a polymerase and histindinol phosphatase (PHP) family enzyme. This tyrosine phosphatase, designated Php1, was required for P. gingivalis community development with other oral bacteria, and in the absence of Php1 activity P. gingivalis was unable to cause disease in a mouse model of periodontitis. This work provides significant insights into the protein tyrosine (de)phosphorylation network in P. gingivalis, its adaptation to heterotypic communities, and its contribution to colonization and virulence.


Sign in / Sign up

Export Citation Format

Share Document